Asselah T, Bièche I, Laurendeau I et al (2005) Liver gene expression signature of mild fibrosis in patients with chronic hepatitis C. Gastroenterology 129(6):2064–2075. https://doi.org/10.1053/j.gastro.2005.09.010
Article CAS PubMed Google Scholar
Chen Z, Han F, Du Y et al (2023) Hypoxic microenvironment in cancer: molecular mechanisms and therapeutic interventions. Signal Transduct Target Ther 8(1):70. https://doi.org/10.1038/s41392-023-01332-8
Article PubMed PubMed Central Google Scholar
Chiang RS, Borovikova AA, King K et al (2016) Current concepts related to hypertrophic scarring in burn injuries. Wound Repair Regen 24(3):466–477. https://doi.org/10.1111/wrr.12432
Article PubMed PubMed Central Google Scholar
Čoma M, Fröhlichová L, Urban L et al (2021) Molecular changes underlying hypertrophic scarring following burns involve specific deregulations at all wound healing stages (inflammation, proliferation and maturation). Int J Mol Sci. https://doi.org/10.3390/ijms22020897
Article PubMed PubMed Central Google Scholar
Fang J, Wang J, Yu L et al (2021) Role of HOXC10 in cancer. Front Oncol 11:684021. https://doi.org/10.3389/fonc.2021.684021
Article CAS PubMed PubMed Central Google Scholar
Finnson KW, Almadani Y, Philip A (2020) Non-canonical (non-SMAD2/3) TGF-β signaling in fibrosis: mechanisms and targets. Semin Cell Dev Biol 101:115–122. https://doi.org/10.1016/j.semcdb.2019.11.013
Article CAS PubMed Google Scholar
He X, Wang H, Wang R et al (2023) HOXC10 promotes esophageal squamous cell carcinoma progression by targeting FOXA3 and indicates poor survival outcome. Heliyon 9(10):e21056. https://doi.org/10.1016/j.heliyon.2023.e21056
Article CAS PubMed PubMed Central Google Scholar
Hu Y, Zhou J (2023) Identification of key genes and functional enrichment analysis of liver fibrosis in nonalcoholic fatty liver disease through weighted gene co-expression network analysis. Genomics Inform 21(4):e45. https://doi.org/10.5808/gi.23051
Article PubMed PubMed Central Google Scholar
Kang M, UHK, E-JO et al. (2023) Differential expression of tension-sensitive HOX genes in fibroblasts is associated with different scar types. Life Science Weekly, 2023/07/18/, p 1063
Ke X, Guo W, Peng Y et al (2022) Investigation into the role of Stmn2 in vascular smooth muscle phenotype transformation during vascular injury via RNA sequencing and experimental validation. Environ Sci Pollut Res Int 29(3):3498–3509. https://doi.org/10.1007/s11356-021-15846-7
Li T, Zhao J (2018) Knockdown of elF3a inhibits TGF-β1-induced extracellular matrix protein expression in keloid fibroblasts. Mol Med Rep 17(3):4057–4061. https://doi.org/10.3892/mmr.2017.8365
Article CAS PubMed Google Scholar
Li G, Zhou R, Zhang Q et al (2016) Fibroproliferative effect of microRNA-21 in hypertrophic scar derived fibroblasts. Exp Cell Res 345(1):93–99. https://doi.org/10.1016/j.yexcr.2016.05.013
Article CAS PubMed Google Scholar
Li S, Zhang W, Wu C et al (2018) HOXC10 promotes proliferation and invasion and induces immunosuppressive gene expression in glioma. FEBS J 285(12):2278–2291. https://doi.org/10.1111/febs.14476
Article CAS PubMed Google Scholar
Liang Q, Pan F, Qiu H et al (2024) CLC-3 regulates TGF-β/Smad signaling pathway to inhibit the process of fibrosis in hypertrophic scar. Heliyon 10(3):e24984. https://doi.org/10.1016/j.heliyon.2024.e24984
Article CAS PubMed PubMed Central Google Scholar
Lingzhi Z, Meirong L, Xiaobing F (2020) Biological approaches for hypertrophic scars. Int Wound J 17(2):405–418. https://doi.org/10.1111/iwj.13286
Paradis V, Bièche I, Dargère D et al (2003) Molecular profiling of hepatocellular carcinomas (HCC) using a large-scale real-time RT-PCR approach: determination of a molecular diagnostic index. Am J Pathol 163(2):733–741. https://doi.org/10.1016/s0002-9440(10)63700-5
Article CAS PubMed PubMed Central Google Scholar
Paradis V, Dargere D, Bieche Y et al (2010) SCG10 expression on activation of hepatic stellate cells promotes cell motility through interference with microtubules. Am J Pathol 177(4):1791–1797. https://doi.org/10.2353/ajpath.2010.100166
Article CAS PubMed PubMed Central Google Scholar
Rabello FB, Souza CD, Farina Júnior JA (2014) Update on hypertrophic scar treatment. Clinics (sao Paulo) 69(8):565–573. https://doi.org/10.6061/clinics/2014(08)11
Scott GA, Goldsmith LA (1993) Homeobox genes and skin development: a review. J Invest Dermatol 101(1):3–8. https://doi.org/10.1111/1523-1747.ep12358258
Article CAS PubMed Google Scholar
Stelnicki EJ, Kömüves LG, Kwong AO et al (1998) HOX homeobox genes exhibit spatial and temporal changes in expression during human skin development. J Invest Dermatol 110(2):110–115. https://doi.org/10.1046/j.1523-1747.1998.00092.x
Article CAS PubMed Google Scholar
Tai Y, Woods EL, Dally J et al (2021) Myofibroblasts: function, formation, and scope of molecular therapies for skin fibrosis. Biomolecules. https://doi.org/10.3390/biom11081095
Article PubMed PubMed Central Google Scholar
Yu J, Chen X, Zhao S et al (2022) HOXC10 promotes metastasis in colorectal cancer by recruiting myeloid-derived suppressor cells. J Cancer 13(12):3308–3317. https://doi.org/10.7150/jca.76945
Article CAS PubMed PubMed Central Google Scholar
Zhang T, Wang X-F, Wang Z-C et al (2020a) Current potential therapeutic strategies targeting the TGF-β/Smad signaling pathway to attenuate keloid and hypertrophic scar formation. Biomed Pharmacother 129:110287. https://doi.org/10.1016/j.biopha.2020.110287
Article CAS PubMed Google Scholar
Zhong FJ, Sun B, Cao MM et al (2021) STMN2 mediates nuclear translocation of Smad2/3 and enhances TGFβ signaling by destabilizing microtubules to promote epithelial-mesenchymal transition in hepatocellular carcinoma. Cancer Lett 506:128–141. https://doi.org/10.1016/j.canlet.2021.03.001
Article CAS PubMed Google Scholar
Zhou S, Xie M, Su J et al (2023) New insights into balancing wound healing and scarless skin repair. J Tissue Eng 14:20417314231185850. https://doi.org/10.1177/20417314231185848
Comments (0)