Amack JD (2022) Structures and functions of cilia during vertebrate embryo development. Mol Reprod Devel 89:579–596. https://doi.org/10.1002/mrd.23650
Article CAS PubMed Google Scholar
Colin IM, Denef J-F, Lengelé B et al (2013) Recent insights into the cell biology of thyroid angiofollicular units. Endocr Rev 34:209–238. https://doi.org/10.1210/er.2012-1015
Article CAS PubMed PubMed Central Google Scholar
Fernández-Santos JM, Morillo-Bernal J, García-Marín R, et al (2012) Paracrine Regulation of Thyroid-Hormone Synthesis by C Cells. In: Agrawal NK (ed) Thyroid Hormone. InTech
Fernández-Santos JM, Utrilla JC, Vázquez-Román V et al (2019) primary cilium in the human thyrocyte: changes in frequency and length in relation to the functional pathology of the thyroid gland. Thyroid 29:595–606. https://doi.org/10.1089/thy.2018.0401
Article CAS PubMed Google Scholar
Gérard A-C, Many M-C, Daumerie C et al (2002) Structural changes in the angiofollicular units between active and hypofunctioning follicles align with differences in the epithelial expression of newly discovered proteins involved in iodine transport and organification. J Clin Endocrinol Metab 87:1291–1299. https://doi.org/10.1210/jcem.87.3.8278
Iwanaga T, Miki T, Takahashi-Iwanaga H (2011) Restricted expression of somatostatin receptor 3 to primary cilia in the pancreatic islets and adenohypophysis of mice. Biomed Res 32:73–81. https://doi.org/10.2220/biomedres.32.73
Article CAS PubMed Google Scholar
Johansson E, Andersson L, Örnros J et al (2015) Revising the embryonic origin of thyroid C cells. Development. https://doi.org/10.1242/dev.126581
Article PubMed PubMed Central Google Scholar
Kameda Y (2016) Cellular and molecular events on the development of mammalian thyroid C cells. Dev Dynam 245:323–341. https://doi.org/10.1002/dvdy.24377
Lee J, Yi S, Kang YE et al (2016a) Morphological and functional changes in the thyroid follicles of the aged murine and humans. J Pathol Transl Med 50:426–435. https://doi.org/10.4132/jptm.2016.07.19
Article PubMed PubMed Central Google Scholar
Lee J, Yi S, Kang YE et al (2016) Defective ciliogenesis in thyroid hürthle cell tumors is associated with increased autophagy. Oncotarget 7:79117–79130. https://doi.org/10.18632/oncotarget.12997
Article PubMed PubMed Central Google Scholar
Lee J, Yi S, Chang JY et al (2019) Loss of primary cilia results in the development of cancer in the murine thyroid gland. Mol Cells 42:113–122
CAS PubMed PubMed Central Google Scholar
Lee J, Park KC, Sul HJ et al (2021a) Loss of primary cilia promotes mitochondria-dependent apoptosis in thyroid cancer. Sci Rep 11:4181. https://doi.org/10.1038/s41598-021-83418-3
Article CAS PubMed PubMed Central Google Scholar
Lee J, Sul HJ, Kim K-H et al (2021b) Primary cilia mediate TSH-regulated thyroglobulin endocytic pathways. Front Endocrinol 12:700083. https://doi.org/10.3389/fendo.2021.700083
Li X, Yang S, Deepak V et al (2021) Identification of cilia in different mouse tissues. Cells 10:1623. https://doi.org/10.3390/cells10071623
Article CAS PubMed PubMed Central Google Scholar
Martin A, Hedinger C, Häberlin-Jakob M, Walt H (1988) Structure and motility of primary cilia in the follicular epithelium of the human thyroid. Virchows Archiv B Cell Pathol 55:159–166. https://doi.org/10.1007/BF02896572
Martin V, Martin L, Viennet G et al (2000) Ultrastructural features of “‘solid cell nest’” of the human thyroid gland: a study of 8 cases. Ultrastruc Pathol 24:1–8. https://doi.org/10.1080/019131200281255
Nunez EA, Gershon MD (1978) Cytophysiology of thyroid parafollicular cells. Int Rev Cytol 52:1–80. https://doi.org/10.1016/s0074-7696(08)60753-6
Article CAS PubMed Google Scholar
Qatato M, Venugopalan V, Al-Hashimi A et al (2021) Trace amine-associated receptor 1 trafficking to cilia of thyroid epithelial cells. Cells 10:1518. https://doi.org/10.3390/cells10061518
Article CAS PubMed PubMed Central Google Scholar
Ríos Moreno MJ, Galera-Ruiz H, De Miguel M et al (2011) Inmunohistochemical profile of solid cell nest of thyroid gland. Endocr Pathol 22:35–39. https://doi.org/10.1007/s12022-010-9145-4
Article CAS PubMed PubMed Central Google Scholar
Satir P (2017) CILIA: before and after. Cilia 6:1. https://doi.org/10.1186/s13630-017-0046-8
Article CAS PubMed PubMed Central Google Scholar
Sobrinho-Simões M, Johannessen JV (1981) Scanning electron microscopy of the normal human thyroid. J Submicrosc Cytol 13:209–222
Spasic M, Jacobs CR (2017) Primary cilia: cell and molecular mechanosensors directing whole tissue function. Semin Cell Dev Biol 71:42–52. https://doi.org/10.1016/j.semcdb.2017.08.036
Article CAS PubMed PubMed Central Google Scholar
Spiegel C, Bestetti G, Rossi G, Blum JW (1993) Feeding of rapeseed presscake meal to pigs: effects on thyroid morphology and function and on thyroid hormone blood levels, on liver and on growth performance*. J Vet Med A 40:45–57. https://doi.org/10.1111/j.1439-0442.1993.tb00599.x
Suzuki K, Lavaroni S, Mori A et al (1998) Autoregulation of thyroid-specific gene transcription by thyroglobulin. Proc Natl Acad Sci USA 95(14):8251–8256. https://doi.org/10.1073/pnas.95.14.8251
Article CAS PubMed PubMed Central Google Scholar
Suzuki K, Kawashima A, Yoshihara A et al (2011) Role of thyroglobulin on negative feedback autoregulation of thyroid follicular function and growth. J Endocrinol 209:169–174. https://doi.org/10.1530/JOE-10-0486
Article CAS PubMed Google Scholar
Szumska J, Batool Z, Al-Hashimi A et al (2019) Treatment of rat thyrocytes in vitro with cathepsin B and L inhibitors results in disruption of primary cilia leading to redistribution of the trace amine associated receptor 1 to the endoplasmic reticulum. Biochimie 166:270–285. https://doi.org/10.1016/j.biochi.2019.07.010
Article CAS PubMed Google Scholar
Utrilla JC, Gordillo-Martínez F, Gómez-Pascual A et al (2015) Comparative study of the primary cilia in thyrocytes of adult mammals. J Anat 227:550–560. https://doi.org/10.1111/joa.12360
Article CAS PubMed PubMed Central Google Scholar
Vázquez-Román V, Utrilla JC, Fernández-Santos JM et al (2013) Postnatal fate of the ultimobranchial remnants in the rat thyroid gland. J Morphol 274:725–732. https://doi.org/10.1002/jmor.20126
Vázquez-Román V, Utrilla JC, Fernández-Santos JM, Martín-Lacave I (2017) Immunohistochemical profiling of the ultimobranchial remnants in the rat postnatal thyroid gland. J Morphol 278:1114–1124. https://doi.org/10.1002/jmor.20698
Article CAS PubMed Google Scholar
Vázquez-Román V, Cameselle-Teijeiro JM, Fernández-Santos JM et al (2022) Histopathological features of pendred syndrome thyroids align with differences in the expression of thyroid-specific markers, apical iodide transporters, and ciliogenesis process. Endocr Pathol 33:484–493. https://doi.org/10.1007/s12022-022-09732-2
Comments (0)