Development of a humanoid robot control system based on AR-BCI and SLAM navigation

Abdulsaheb J, Kadhim D (2023) Real-time SLAM mobile robot and navigation based on cloud-based implementation. J Robot 2023:9967236

Google Scholar 

Ayaka F, Kristiina J, Kei O et al (2022) Development of dialogue system architecture toward co-creating social intelligence when talking with a partner robot. Front Robot AI 9:933001

Google Scholar 

Baniqued P, Stanyer E, Awais M et al (2021) Brain-computer interface robotics for hand rehabilitation after stroke: a systematic review. J NeuroEng Rehabil 18(1):15

PubMed  PubMed Central  Google Scholar 

Barbehenn M (1998) A note on the complexity of Dijkstra’s algorithm for graphs with weighted vertices. IEEE Trans Comput 47(2):263

Google Scholar 

Bell C, Shenoy P, Chalodhorn R et al (2008) Control of a humanoid robot by a noninvasive brain-computer interface in humans. J Neural Eng 5(2):214–220

Google Scholar 

Berg J, Lu S (2020) Review of interfaces for industrial human-robot interaction. Cur Robot Rep 1:27–34

Google Scholar 

Cadena C, Carlone L, Carrillo H et al (2016) Past, present, and future of simultaneous localization and mapping: toward the robust-perception age. IEEE Trans Robot 32(6):1309–1332

Google Scholar 

Canzobre D, Regueiro C, Calvo-Varela L et al (2016) Integration of 3-D perception and autonomous computation on a NAO humanoid robot. In: Robot 2015: second Iberian robotics conference, 1:161−173

Chae Y, Jeong J, Jo S (2012) Toward brain-actuated humanoid robots: asynchronous direct control using an EEG-based BCI. IEEE Trans Robot 28(5):1131–1144

Google Scholar 

Chamola V, Vineet A, Nayyar A et al (2020) Brain-computer interface-based humanoid control: a review. Sensors 20(13):3620

PubMed  PubMed Central  Google Scholar 

Chella A, Pagello E, Menegatti E et al (2009) A BCI teleoperated museum robotic guide. In: Proceedings of the 2009 international conference on complex, 16:783–788

Chen X, Wang Y, Nakanishi M et al (2015) High-speed spelling with a noninvasive brain–computer interface. Proc Natl Acad Sci 112(44):E6058–E6067

CAS  PubMed  PubMed Central  Google Scholar 

Chen X, Wang Y, Gao S et al (2015) Filter bank canonical correlation analysis for implementing a high-speed SSVEP-based brain-computer interface. J Neural Eng 12(4):14

Google Scholar 

Chen X, Zhao B, Wang Y et al (2018) Control of a 7-DOF robotic arm system with an SSVEP-based BCI. Int J Neural Syst 28(8):1850018

PubMed  Google Scholar 

Chen X, Zhao B, Wang Y et al (2019) Combination of high-frequency SSVEP-based BCI and computer vision for controlling a robotic arm. J Neural Eng 16(2):026012

PubMed  Google Scholar 

Chen X, Huang X, Wang Y et al (2020) Combination of augmented reality based brain-computer interface and computer vision for high-level control of a robotic arm. IEEE Trans Neural Syst Rehabil Eng 28(12):3140–3147

PubMed  Google Scholar 

Chen L, Chen P, Zhao S et al (2022) Adaptive asynchronous control system of robotic arm based on augmented reality-assisted brain–computer interface. J Neural Eng 18(9):066005

Chikurtev D (2015) Optimizing the navigation for mobile robot for inspection by using robot operating system. Prob Eng Cybern Robot 66:63–74

Google Scholar 

Chong T, Tang X, Leng C et al (2015) Sensor technologies and simultaneous localization and mapping (SLAM). Procedia Comput Sci 76:174–179

Google Scholar 

Evripidou S, Georgiou K, Doitsidis L et al (2020) Educational robotics: platforms, competitions and expected learning outcomes. IEEE Access 8:219534–219562

Google Scholar 

Flesher S, Downey J, Weiss J et al (2021) A brain-computer interface that evokes tactile sensations improves robotic arm control. Science 372(6544):831–836

Fu R, Feng X, Wang S et al (2024) Control of the robotic arm system with an SSVEP-based BCI. Meas Sci Technol 35(5):055702

CAS  Google Scholar 

Gao X, Wang Y, Chen X et al (2021) Interface, interaction, and intelligence in generalized brain-computer interfaces. Trends Cogn Sci 25(8):671–684

PubMed  Google Scholar 

Gao S, Wang Y, Gao X et al (2014) Visual and auditory brain-computer interfaces. IEEE Trans Biomed Eng 61(5):1436–1447

Gatesichapakorn S, Takamatsu J, Ruchanurucks M (2019) ROS based autonomous mobile robot navigation using 2D LiDAR and RGB-D camera. Proceedings of 1st international symposium on instrumentation, control, artificial intelligence, and robotics (ICA-SYMP). pp 151–154

Han X, Lin K, Gao S et al (2019) A novel system of SSVEP-based human-robot coordination. J Neural Eng 16(1):016006

Google Scholar 

Henrik A, Jonas L, Stephanie L (2022) A local planner for accurate positioning for a multiple steer-and-drive unit vehicle using non-linear optimization. Sensors 22(7):2588

Google Scholar 

Hochberg L, Bacher D, Jarosiewicz B et al (2012) Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature 485(7398):372–375

Kam H, Lee S, Park T et al (2015) RViz: a toolkit for real domain data visualization. Telecommun Syst 60:337–345

Google Scholar 

Ke Y, Liu P, An X et al (2020) An online SSVEP-BCI system in an optical see-through augmented reality environment. J Neural Eng 17(1):016066

PubMed  Google Scholar 

Khademi Z, Ebrahimi F, Kordy H (2023) A review of critical challenges in MI-BCI: from conventional to deep learning methods. J Neurosci Methods 383:109736

Google Scholar 

Labbé M, Michaud F (2019) RTAB-Map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. J Field Robot 36(2):416–446

Google Scholar 

Lee Y, Hwang S, Park J (2015) Balancing of humanoid robot using contact force/moment control by task-oriented whole body control framework. Auton Robots 40:457–472

Google Scholar 

Li W, Li M, Zhao J (2015) Control of humanoid robot via motion-onset visual evoked potentials. Front Syst Neurosci 9(8):247

Google Scholar 

Li M, Chen X, Cui H (2023) A high-frequency SSVEP-BCI system based on simultaneous modulation of luminance and motion using intermodulation frequencies. IEEE Trans Neural Syst Rehabil Eng 31:2603–2611

Mao X, Li W, Lei C et al (2019) A brain-robot interaction system by fusing human and machine intelligence. IEEE Trans Neural Syst Rehabil Eng 27(3):533–542

PubMed  Google Scholar 

McFarland D, Wolpaw J (2011) Brain-computer interfaces for communication and control. Clin Neurophysiol 113(6):767–791

Google Scholar 

Melkas H, Hennala L, Pekkarinen S et al (2020) Impacts of robot implementation on care personnel and clients in elderly-care institutions. Int J Med Inform 134:104041

PubMed  Google Scholar 

Petit D, Gergondet P, Cherubini A et al (2014) A. Navigation assistance for a BCI-controlled humanoid robot. In: Proceedings of the 4th annual IEEE international conference on cyber technology in automation, 4:246–251

Qidwai U, Kashem SB, Conor O (2020) Humanoid robot as a teacher’s assistant: helping children with autism to learn social and academic skills. J Intell Robot Syst 98(3–4):759–770

Google Scholar 

Saduanov B, Alizadeh T, An J et al (2018) Trained by demonstration humanoid robot controlled via a BCI system for telepresence. In: Proceedings of the 2018 6th international conference on brain-computer interface (BCI), 15:1–4

Santiago F, Ruben H, Antonio A et al (2022) How do consumers’ gender and rational thinking affect the acceptance of entertainment social robots? Int J Soc Robot 14(4):973–994

Google Scholar 

Saunderson S, Nejat G (2019) How robots influence humans: a survey of nonverbal communication in social human-robot interaction. Int J Soc Robot 11:575–608

Google Scholar 

Shan T, Englot B, Ratti C et al (2021) Lvi-sam: tightly-coupled lidar-visual-inertial odometry via smoothing and mapping. In: 2021 IEEE international conference on robotics and automation (ICRA). pp 5692–5698

Singla R, Khosla A, Jha R (2013) Influence of stimuli color on steady-state visual evoked potentials based BCI wheelchair control. J Biomed Sci Eng 6(11):1050

Google Scholar 

Spataro R, Chella A, Allison B et al (2017) Reaching and grasping a glass of water by locked-in ALS patients through a BCI-controlled humanoid robot. Front Hum Neurosci 1(11):68

Google Scholar 

Tonin L, Millan J (2021) Noninvasive brain-machine interfaces for robotic devices. Annu Rev Control Robot Auton Syst 4:191–214

Vidya N, Bryan G, Kevin M et al (2022) A brain-computer interface for teleoperation of a semiautonomous mobile robotic assistive system using SLAM. J Robot 2022:6178917

Google Scholar 

Wang M, Li R, Zhang R et al (2018) A wearable SSVEP-based BCI system for quadcopter control using head-mounted device. IEEE Access 6:26789–26798

Google Scholar 

Xu B, Liu D, Xue M et al (2023) Continuous shared control of a mobile robot with brain-computer interface and autonomous navigation for daily assistance. Comp Struct Biotechnol J 22:3–16

CAS  Google Scholar 

Yuan F, Klavon E, Liu Z et al (2021) A systematic review of robotic rehabilitation for cognitive training. Front Robot AI 11(8):605715

Zhang S, Gao X, Chen X (2022) Humanoid robot walking in maze controlled by SSVEP-BCI based on augmented reality stimulus. Front Hum Neurosci 16:908050

Google Scholar 

Zhang J, Gao S, Zhou K et al (2023) An online hybrid BCI combining SSVEP and EOG-based eye movements. Front Hum Neurosci 17:1103935

PubMed  PubMed Central  Google Scholar 

Zhang S, Chen Y, Zhang L et al (2023) Study on robot grasping system of SSVEP-BCI based on augmented reality stimulus. Tsinghua Sci Technol 28(2):322–329

Google Scholar 

Zhao J, Li W, Li M (2015) Comparative study of SSVEP- and P300-based models for the telepresence control of humanoid robots. PLoS ONE 10(11):e0142168

Google Scholar 

Comments (0)

No login
gif