Zubair M, Ali J, Alhussein M, Hassan S, Aurangzeb K, Umair M. An improved machine learning-driven framework for cryptocurrencies price prediction with sentimental cautioning. IEEE Access. 2024.
Tandon C, Revankar S, Parihar SS. How can we predict the impact of the social media messages on the value of cryptocurrency? Insights from big data analytics. Int J Inf Manag Data Insights. 2021;1(2):100035.
Mao R, Liu Q, He K, Li W, Cambria E. The biases of pre-trained language models: an empirical study on prompt-based sentiment analysis and emotion detection. IEEE Trans Affect Comput. 2022;14(3):1743–53.
Li W, Zhu L, Mao R, Cambria E. Skier: a symbolic knowledge integrated model for conversational emotion recognition. In: Proceedings of the AAAI conference on artificial intelligence, vol 37, pp. 13121–9. 2023.
Fan C, Lin J, Mao R, Cambria E. Fusing pairwise modalities for emotion recognition in conversations. Inf Fusion. 2024;106:102306.
Badlani B, Yadav RA, Kumar A. Psychological impact of cryptocurrency volatility on investor emotions and decision making. J ReAttach Therapy Develop Diversit. 2023;6(7s):204–14.
Yin L, Nie J, Han L. Understanding cryptocurrency volatility: the role of oil market shocks. Int Rev Econ Finance. 2021;72:233–53.
Bouri E, Gupta R, Roubaud D. Herding behaviour in cryptocurrencies. Financ Res Lett. 2019;29:216–21.
Ji Q, Bouri E, Lau CKM, Roubaud D. Dynamic connectedness and integration in cryptocurrency markets. Int Rev Financ Anal. 2019;63:257–72.
Glaser F, Zimmermann K, Haferkorn M, Weber MC, Siering M. Bitcoin-asset or currency? Revealing users’ hidden intentions. Revealing Users’ Hidden Intentions (April 15, 2014). ECIS. 2014.
Baek C, Elbeck M. Bitcoins as an investment or speculative vehicle? A first look. Appl Econ Lett. 2015;22(1):30–4.
Makarov I, Schoar A. Trading and arbitrage in cryptocurrency markets. J Financ Econ. 2020;135(2):293–319.
Zhou Z, Song Z, Xiao H, Ren T. Multi-source data driven cryptocurrency price movement prediction and portfolio optimization. Expert Syst Appl. 2023;219:119600.
Kraaijeveld O, De Smedt J. The predictive power of public twitter sentiment for forecasting cryptocurrency prices. J Int Finan Markets Inst Money. 2020;65:101188.
Kristoufek L. BitCoin meets Google Trends and Wikipedia: quantifying the relationship between phenomena of the internet era. Sci Rep. 2013;3(1):3415.
Naeem MA, Mbarki I, Suleman MT, Vo XV, Shahzad SJH. Does twitter happiness sentiment predict cryptocurrency? Int Rev Financ. 2021;21(4):1529–38.
Valencia F, Gómez-Espinosa A, Valdés-Aguirre B. Price movement prediction of cryptocurrencies using sentiment analysis and machine learning. Entropy. 2019;21(6):589.
Gurrib I, Kamalov F. Predicting bitcoin price movements using sentiment analysis: a machine learning approach. Stud Econ Financ. 2022;39(3):347–64.
Wołk K. Advanced social media sentiment analysis for short-term cryptocurrency price prediction. Expert Syst. 2020;37(2):12493.
Cambria E, Liu Q, Decherchi S, Xing F, Kwok K. Senticnet 7: a commonsense-based neurosymbolic AI framework for explainable sentiment analysis. In: Proceedings of the Thirteenth language resources and evaluation conference, pp. 3829–39. 2022.
Cambria E, Havasi C, Hussain A. Senticnet 2: a semantic and affective resource for opinion mining and sentiment analysis. In: Twenty-fifth international FLAIRS Conference. 2012.
Finance Y. Yahoo Finance. 2024. https://finance.yahoo.com. Accessed 07 Feb 2024
Dag A, Dag AZ, Asilkalkan A, Simsek S, Delen D. A tree augmented Naïve Bayes-based methodology for classifying cryptocurrency trends. J Bus Res. 2023;156:113522.
Jang H, Lee J. An empirical study on modeling and prediction of bitcoin prices with Bayesian neural networks based on blockchain information. Ieee Access. 2017;6:5427–37.
Li B. Research on WNN modeling for gold price forecasting based on improved artificial bee colony algorithm. Comput Intell Neurosci. 2014;2014:2–2.
Mern J, Anderson S, Poothokaran J. Using bitcoin ledger network data to predict the price of bitcoin. cs229. stanford. edu. 2017.
Sami I, Junejo KN. Predicting future gold rates using machine learning approach. Int J Adv Comp Sci Appl. 2017;8(12)
Weng B, Ahmed MA, Megahed FM. Stock market one-day ahead movement prediction using disparate data sources. Expert Syst Appl. 2017;79:153–63.
Tash M, Armenta-Segura J, Ahani Z, Kolesnikova O, Sidorov G, Gelbukh A. Lidoma@ dravidianlangtech: convolutional neural networks for studying correlation between lexical features and sentiment polarity in tamil and tulu languages. In: Proceedings of the third workshop on speech and language technologies for dravidian languages, pp. 180–185. 2023.
Shahiki-Tash M, Armenta-Segura J, Kolesnikova O, Sidorov G, Gelbukh A. Lidoma at hope2023iberlef: hope speech detection using lexical features and convolutional neural networks. In: Proceedings of the Iberian Languages Evaluation Forum (IberLEF 2023), Co-located with the 39th Conference of the Spanish Society for Natural Language Processing (SEPLN 2023), CEUR-WS. Org. 2023.
Bouri E, Gupta R. Predicting bitcoin returns: comparing the roles of newspaper-and internet search-based measures of uncertainty. Financ Res Lett. 2021;38:101398.
Colianni S, Rosales S, Signorotti M. Algorithmic trading of cryptocurrency based on twitter sentiment analysis. CS229 Project. 2015;1(5):1–4.
Tash MS, Kolesnikova O, Ahani Z, Sidorov G. Psycholinguistic and emotion analysis of cryptocurrency discourse on X platform. Sci Rep. 2024;14(1):8585.
SenticNet: Sentic API. 2024. https://sentic.net/api/. Accessed 07 Feb 2024
Cohen I, Huang Y, Chen J, Benesty J, Benesty J, Chen J, Huang Y, Cohen I. Pearson correlation coefficient. Noise reduction in speech processing, 1–4. 2009.
Comments (0)