CLDN11 deficiency upregulates FOXM1 to facilitate breast tumor progression through hedgehog signaling pathway

Agarwal R, D’Souza T, Morin PJ (2005) Claudin-3 and claudin-4 expression in ovarian epithelial cells enhances invasion and is associated with increased matrix metalloproteinase-2 activity. Cancer Res 65(16):7378–7385

Article  CAS  PubMed  Google Scholar 

Agarwal R, Mori Y, Cheng Y, Jin Z, Olaru AV, Hamilton JP et al (2009) Silencing of claudin-11 is associated with increased invasiveness of gastric cancer cells. PLoS ONE 4(11):e8002. https://doi.org/10.1371/journal.pone.0008002

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ashikari D, Takayama KI, Obinata D, Takahashi S, Inoue S (2017) CLDN8, an androgen-regulated gene, promotes prostate cancer cell proliferation and migration. Cancer Sci 108(7):1386–1393. https://doi.org/10.1111/cas.13269

Article  CAS  PubMed  PubMed Central  Google Scholar 

Awsare NS, Martin TA, Haynes MD, Matthews PN, Jiang WG (2011) Claudin-11 decreases the invasiveness of bladder cancer cells. Oncol Rep 25(6):1503–1509. https://doi.org/10.3892/or.2011.1244

Article  CAS  PubMed  Google Scholar 

Bhat AA, Syed N, Therachiyil L, Nisar S, Hashem S, Macha MA et al (2020) Claudin-1, a double-edged Sword in Cancer. Int J Mol Sci 21(2). https://doi.org/10.3390/ijms21020569

Bhateja P, Cherian M, Majumder S, Ramaswamy B (2019) The hedgehog signaling pathway: a viable target in breast Cancer? Cancers (Basel) 11(8). https://doi.org/10.3390/cancers11081126

Bianchi A, Gervasi ME, Bakin A (2010) Role of β5-integrin in epithelial-mesenchymal transition in response to TGF-β. Cell Cycle 9(8):1647–1659. https://doi.org/10.4161/cc.9.8.11517

Article  CAS  PubMed  Google Scholar 

Correia AL, Guimaraes JC, Auf der Maur P, De Silva D, Trefny MP, Okamoto R et al (2021) Hepatic stellate cells suppress NK cell-sustained breast cancer dormancy. Nature 594(7864):566–571. https://doi.org/10.1038/s41586-021-03614-z

Article  CAS  PubMed  Google Scholar 

Furuse M, Sasaki H, Tsukita S (1999) Manner of interaction of heterogeneous claudin species within and between tight junction strands. J Cell Biol 147(4):891–903. https://doi.org/10.1083/jcb.147.4.891

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO et al (2013) Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal 6(269):pl1. https://doi.org/10.1126/scisignal.2004088

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gartel AL (2017) FOXM1 in Cancer: interactions and vulnerabilities. Cancer Res 77(12):3135–3139. https://doi.org/10.1158/0008-5472.can-16-3566

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gentles AJ, Newman AM, Liu CL, Bratman SV, Feng W, Kim D et al (2015) The prognostic landscape of genes and infiltrating immune cells across human cancers. Nat Med 21(8):938–945. https://doi.org/10.1038/nm.3909

Article  CAS  PubMed  PubMed Central  Google Scholar 

Giammona A, Crivaro E, Stecca B (2023) Emerging roles of hedgehog signaling in Cancer Immunity. Int J Mol Sci 24(2). https://doi.org/10.3390/ijms24021321

Habib JG, O’Shaughnessy JA (2016) The hedgehog pathway in triple-negative breast cancer. Cancer Med 5(10):2989–3006. https://doi.org/10.1002/cam4.833

Article  PubMed  PubMed Central  Google Scholar 

Hahn H, Wicking C, Zaphiropoulous PG, Gailani MR, Shanley S, Chidambaram A et al (1996) Mutations of the human homolog of Drosophila patched in the nevoid basal cell carcinoma syndrome. Cell 85(6):841–851. https://doi.org/10.1016/s0092-8674(00)81268-4

Article  CAS  PubMed  Google Scholar 

Halasi M, Gartel AL (2013) FOX(M1) news–it is cancer. Mol Cancer Ther 12(3):245–254. https://doi.org/10.1158/1535-7163.mct-12-0712

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hashimoto I, Oshima T (2022) Claudins and gastric Cancer: an overview. Cancers (Basel) 14(2). https://doi.org/10.3390/cancers14020290

Jiang J (2022) Hedgehog signaling mechanism and role in cancer. Semin Cancer Biol 85:107–122. https://doi.org/10.1016/j.semcancer.2021.04.003

Article  CAS  PubMed  Google Scholar 

Kalathil D, John S, Nair AS (2020) FOXM1 and Cancer: Faulty Cellular Signaling derails Homeostasis. Front Oncol 10:626836. https://doi.org/10.3389/fonc.2020.626836

Article  PubMed  Google Scholar 

Katzenellenbogen BS, Guillen VS, Katzenellenbogen JA (2023) Targeting the oncogenic transcription factor FOXM1 to improve outcomes in all subtypes of breast cancer. Breast Cancer Res 25(1):76. https://doi.org/10.1186/s13058-023-01675-8

Article  CAS  PubMed  PubMed Central  Google Scholar 

Khan MA, Khan P, Ahmad A, Fatima M, Nasser MW (2023) FOXM1: a small fox that makes more tracks for cancer progression and metastasis. Semin Cancer Biol 92:1–15. https://doi.org/10.1016/j.semcancer.2023.03.007

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kominsky SL, Argani P, Korz D, Evron E, Raman V, Garrett E et al (2003) Loss of the tight junction protein claudin-7 correlates with histological grade in both ductal carcinoma in situ and invasive ductal carcinoma of the breast. Oncogene 22(13):2021–2033

Article  CAS  PubMed  Google Scholar 

Konjević G, Jurisić V, Spuzić I (2001) Association of NK cell dysfunction with changes in LDH characteristics of peripheral blood lymphocytes (PBL) in breast cancer patients. Breast Cancer Res Treat 66(3):255–263. https://doi.org/10.1023/a:1010602822483

Article  PubMed  Google Scholar 

Kyuno D, Takasawa A, Kikuchi S, Takemasa I, Osanai M, Kojima T (2021) Role of tight junctions in the epithelial-to-mesenchymal transition of cancer cells. Biochim Biophys Acta Biomembr 1863(3):183503. https://doi.org/10.1016/j.bbamem.2020.183503

Article  CAS  PubMed  Google Scholar 

Lal-Nag M, Morin PJ (2009) The claudins. Genome Biol 10(8):235. https://doi.org/10.1186/gb-2009-10-8-235

Article  CAS  PubMed  PubMed Central  Google Scholar 

Laoukili J, Stahl M, Medema RH (2007) FoxM1: at the crossroads of ageing and cancer. Biochim Biophys Acta 1775(1):92–102. https://doi.org/10.1016/j.bbcan.2006.08.006

Article  CAS  PubMed  Google Scholar 

Li HP, Peng CC, Wu CC, Chen CH, Shih MJ, Huang MY et al (2018) Inactivation of the tight junction gene CLDN11 by aberrant hypermethylation modulates tubulins polymerization and promotes cell migration in nasopharyngeal carcinoma. J Exp Clin Cancer Res 37(1):102. https://doi.org/10.1186/s13046-018-0754-y

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lu J, Steeg PS, Price JE, Krishnamurthy S, Mani SA, Reuben J et al (2009) Breast cancer metastasis: challenges and opportunities. Cancer Res 69(12):4951–4953. https://doi.org/10.1158/0008-5472.can-09-0099

Article  CAS  PubMed  Google Scholar 

Michl P, Barth C, Buchholz M, Lerch MM, Rolke M, Holzmann K-H et al (2003) Claudin-4 expression decreases invasiveness and metastatic potential of pancreatic cancer. Cancer Res 63(19):6265–6271

CAS  PubMed  Google Scholar 

Mineta K, Yamamoto Y, Yamazaki Y, Tanaka H, Tada Y, Saito K et al (2011) Predicted expansion of the claudin multigene family. FEBS Lett 585(4):606–612. https://doi.org/10.1016/j.febslet.2011.01.028

Article  CAS  PubMed  Google Scholar 

Philip R, Heiler S, Mu W, Büchler MW, Zöller M, Thuma F (2015) Claudin-7 promotes the epithelial-mesenchymal transition in human colorectal cancer. Oncotarget 6(4):2046–2063. https://doi.org/10.18632/oncotarget.2858

Comments (0)

No login
gif