Wei DP, Wanasinghe DN, Hyde KD, Mortimer PE, Xu J, Xiao YP, et al. The genus Simplicillium. MycoKeys. 2019;60:69–92.
Article PubMed PubMed Central Google Scholar
Karim F, Liang X, Qi SH. Bioassay-guided isolation of antifungal cyclopeptides from the deep-sea-derived fungus Simplicillium obclavatum EIODSF 020. Phytochem. Lett. 2022;48:68–71.
Liang X, Zhang XY, Nong XH, Wang J, Huang ZH, Qi SH. Eight linear peptides from the deep-sea-derived fungus Simplicillium obclavatum EIODSF 020. Tetrahedron. 2016;72:3092–7.
Zhao D, Zhu X, Chen L, Liu W, Chen J, Wang S, et al. Toxicity of a secondary metabolite produced by Simplicillium chinense Snef5 against the root-knot nematode Meloidogyne incognita. Acta Agric Scand B Soil Plant Sci. 2020;70:550–5.
Dai Y, Lin Y, Pang X, Luo X, Salendra L, Wang J, et al. Peptides from the soft coral-associated fungus Simplicillium sp. SCSIO 41209. Phytochemistry. 2018;154:56–62.
Article CAS PubMed Google Scholar
Anoumedem EGM, Mountessou BYG, Kouam SF, Narmani A, Surup F. Simplicilones A and B Isolated from the endophytic fungus Simplicillium subtropicum SPC3. Antibiotics. 2020;9:753.
Article CAS PubMed PubMed Central Google Scholar
Cheng X, Liang X, Yao FH, Liu XB, Qi SH. Fusidane-type antibiotics from the marine-derived fungus Simplicillium sp. SCSIO 41513. J. Nat. Prod. 2021;84:2945–52.
Article CAS PubMed Google Scholar
Takata K, Iwatsuki M, Yamamoto T, Shirahata T, Nonaka K, Masuma R, et al. Aogacillins A and B produced by Simplicillium sp. FKI-5985: new circumventors of Arbekacin resistance in MRSA. Org. Lett. 2013;15:4678–81.
Article CAS PubMed Google Scholar
Prasasty V, Radifar M, Istyastono E. Natural peptides in drug discovery targeting acetylcholinesterase. Molecules. 2018;23:2344.
Article PubMed PubMed Central Google Scholar
de la Torre BG, Albericio F. The pharmaceutical industry in 2019. An analysis of FDA drug approvals from the perspective of molecules. Molecules. 2020;25:745.
Article PubMed PubMed Central Google Scholar
Janiszewska J. Natural antimicrobial peptides in biomedical applications. Polimery. 2014;59:699–707.
Gao B, Zhao D, Li L, Cheng Z, Guo Y. Antiviral peptides with in vivo activity: development and modes of action. ChemPlusChem. 2021;86:1547–58.
Article CAS PubMed Google Scholar
Zhu S, Du C, Yu T, Cong X, Liu Y, Chen S, et al. Antioxidant activity of selenium-enriched peptides from the protein hydrolysate of Cardamine violifolia. J. Food Sci. 2019;84:3504–11.
Article CAS PubMed Google Scholar
Liang X, Nong XH, Huang ZH, Qi SH. Antifungal and antiviral cyclic peptides from the deep-sea-derived fungus Simplicillium obclavatum EIODSF 020. J. Agric. Food Chem. 2017;65:5114–21.
Article CAS PubMed Google Scholar
Xue S, Hu M, Iyer V, Yu J. Blocking the PD-1/PD-L1 pathway in glioma: a potential new treatment strategy. J. Hematol. Oncol. 2017;10:81.
Article PubMed PubMed Central Google Scholar
Yi M, Niu M, Xu L, Luo S, Wu K. Regulation of PD-L1 expression in the tumor microenvironment. J. Hematol. Oncol. 2021;14:10.
Article CAS PubMed PubMed Central Google Scholar
Liu C, Seeram NP, Ma H. Small molecule inhibitors against PD-1/PD-L1 immune checkpoints and current methodologies for their development: a review. Cancer Cell Int. 2021;21:239.
Article PubMed PubMed Central Google Scholar
Jing T, Zhang Z, Kang Z, Mo J, Yue X, Lin Z, et al. Discovery and optimization of novel biphenyl derivatives bearing cyclopropyl linkage as potent programmed cell death-1/programmed cell death-ligand 1 inhibitors. J. Med. Chem. 2023;66:6811–35.
Article CAS PubMed Google Scholar
Kiriyama N, Nitta K, Sakaguchi Y, Taguchi Y, Yamamoto Y. Studies on the metabolic products of Aspergillus terreus. III. Metabolites of the Strain IFO 8835. (1). Chem. Pharm. Bull. 1976;25:2593–601.
Thongtan J, Saenboonrueng J, Rachtawee P, Isaka M. An antimalarial tetrapeptide from the entomopathogenic fungus Hirsutella sp. BCC 1528. J. Nat. Prod. 2006;69:713–4.
Comments (0)