United States Centers for Disease Control and Prevention. Antibiotic resistance threats in the United States 2019. Atlanta, GA: U.S. Department of Health and Human Services, CDC; 2019. https://doi.org/10.15620/cdc:82532.
Cristillo AD, et al. Antimicrobial resistance in Neisseria gonorrhoeae: proceedings of the STAR Sexually transmitted infection—clinical trial group programmatic meeting. Sex Transm Dis. 2019;46:e18–e25.
Katz AR, et al. Cluster of Neisseria gonorrhoeae isolates with high-level azithromycin resistance and decreased ceftriaxone susceptibility, Hawaii, 2016. Clin Infect Dis. 2017;65:918–23.
Ohnishi M, et al. Ceftriaxone-resistant Neisseria gonorrhoeae, Japan. Emerg Infect Dis. 2011;17:148–49.
Article PubMed PubMed Central Google Scholar
Unemo M, Rio CD, Shafer WM. Antimicrobial resistance expressed by Neisseria gonorrhoeae: a major global public health problem in the 21st century. Microbiol Spectr. 2016;4. https://doi.org/10.1128/microbiolspec.EI10-0009-2015.
Wi T, et al. Antimicrobial resistance in Neisseria gonorrhoeae: global surveillance and a call for international collaborative action. PLoS Med. 2017;14:e1002344. https://doi.org/10.1371/journal.pmed.1002344
Article CAS PubMed PubMed Central Google Scholar
Alirol E, et al. Multidrug-resistant gonorrhea: a research and development roadmap to discover new medicines. PLoS Med. 2017;14:e1002366. https://doi.org/10.1371/journal.pmed.1002366
Article CAS PubMed PubMed Central Google Scholar
Bradford PA, Miller AA, O’Donnell J, Mueller JP. Zoliflodacin: an oral spiropyrimidinetrione antibiotic for the treatment of Neisseria gonorrheae, Including Multi-Drug-Resistant Isolates. ACS Infect Dis. 2020;6:1332–45.
Article CAS PubMed Google Scholar
Farrell DJ, Sader HS, Rhomberg PR, Scangarella-Oman NE, Flamm RK. In vitro activity of gepotidacin (GSK2140944) against Neisseria gonorrhoeae. Antimicrob Agents Chemother. 2017;61:https://doi.org/10.1128/aac.02047-16.
Li W, et al. Nocathiacins, new thiazolyl peptide antibiotics from Nocardia sp. I. Taxonomy, fermentation and biological activities. J Antibiot. 2003;56:226–31.
Leet JE, et al. Nocathiacins, new thiazolyl peptide antibiotics from Nocardia sp. II. Isolation, characterization, and structure determination. J Antibiot. 2003;56:232–42.
Shen X, Mustafa M, Chen Y, Cao Y, Gao J. Natural thiopeptides as a privileged scaffold for drug discovery and therapeutic development. Med Chem Res. 2019;28:1063–98.
Fujii K, et al. A nonempirical method using LC/MS for determination of the absolute configuration of constituent amino acids in a peptide: elucidation of limitations of marfey’s method and of its separation mechanism. Anal Chem. 1997;69:3346–52.
Martin J, et al. Kocurin, the true structure of PM181104, an anti-methicillin-resistant Staphylococcus aureus (MRSA) thiazolyl peptide from the marine-derived bacterium Kocuria palustris. Mar Drugs. 2013;11:387–98.
Article CAS PubMed PubMed Central Google Scholar
Constantine KL, et al. Conformation and absolute configuration of nocathiacin I determined by NMR spectroscopy and chiral capillary electrophoresis. J Am Chem Soc. 2002;124:7284–5.
Article CAS PubMed Google Scholar
Kim H, Yoo D, Choi SY, Chun YK, Kim YG. Efficient and stereoselective synthesis of (2S,3S,4S)-3,4-dihydroxyglutamic acid via intramolecular epoxidation. Tetrahedron: Asymmetry. 2008;19:1965–69.
Sasaki T, et al. MJ347-81F4 A & B, novel antibiotics from Amycolatopsis sp.: taxonomic characteristics, fermentation, and antimicrobial activity. J Antibiot. 1998;51:715–21.
Tanaka T, Endo T, Shimizu A, Yoshida R, Suzuki Y. A new antibiotic, multhiomycin. J Antibiot. 1970;23:231–37.
Zhang C, et al. Thiazomycins, thiazolyl peptide antibiotics from Amycolatopsis fastidiosa. J Nat Prod. 2009;72:841–47.
Article CAS PubMed Google Scholar
Zhang C, et al. Isolation, structure, and antibacterial activity of philipimycin, a thiazolyl peptide discovered from Actinoplanes philippinensis MA7347. J Am Chem Soc. 2008;130:12102–110.
Article CAS PubMed Google Scholar
Pagano JF, Weinstein MJ, Sout HA, Donovick R. Thiostrepton, a new antibiotic I. In vitro studies. Antibiot Annu. 1955;3:554–9.
Korzybski T, Koszyk-Gindifer Z, Kurylowicz W. Antibiotics: origin, nature and properties. Oxford: Pergamon; 1967.
Pestka S. Thiostrepton: a ribosomal inhibitor of translocation. Biochem Biophys Res Co. 1970;40:667–74.
Talà et al. Thiostrepton, a resurging drug inhibiting the stringent response to counteract antibiotic-resistance and expression of virulence determinants in Neisseria gonorrhoeae. Front Microbiol. 2023;14. https://doi.org/10.3389/fmicb.2023.1104454.
Pucci MJ, et al. Antimicrobial evaluation of nocathiacins, a thiazole peptide class of antibiotics. Antimicrob Agents Chemother. 2004;48:3697–701.
Article CAS PubMed PubMed Central Google Scholar
Shimanaka K, et al. Novel antibiotics, amythiamicins. IV. A mutation in the elongation factor Tu gene in a resistant mutant of B. subtilis. J Antibiot. 1995;48:182–4.
Folster JP, et al. MtrR modulates rpoH expression and levels of antimicrobial resistance in Neisseria gonorrhoeae. J Bacteriol. 2009;191:287–97.
Article CAS PubMed Google Scholar
Johnson PJ, Shafer WM. The transcriptional repressor, MtrR, of the mtrCDE efflux pump operon of Neisseria gonorrhoeae can also serve as an activator of “off target” gene (glnE) expression. Antibiotics. 2015;4:188–97.
Article PubMed PubMed Central Google Scholar
Lee EH, Rouquette-Loughlin C, Flster JP, Shafer WM. FarR regulates the farAB-encoded efflux pump of Neisseria gonorrhoeae via an MtrR regulatory mechanism. J Bacteriol. 2003;185:7145–52.
Article CAS PubMed PubMed Central Google Scholar
Pfister P, et al. 23S rRNA base pair 2057–2611 determines ketolide susceptibility and fitness cost of the macrolide resistance mutation 2058A→G. Proc Natl Acad Sci USA. 2005;102:5180–85.
Article CAS PubMed PubMed Central Google Scholar
Vincent LR, et al. In vivo-selected compensatory mutations restore the fitness cost of mosaic penA alleles that confer ceftriaxone resistance in Neisseria gonorrhoeae. mBio. 2018;9:e01905–17.
Article CAS PubMed PubMed Central Google Scholar
Saitou N, Nei M. The neighbor joining method: a new method of constructing phylogenetic trees. Mol Biol Evol. 1987;6:514–25.
Larkin MA, et al. Clustal W and Clustal X version 2.0. Bioinformatics. 2007;23:2947–48.
Article CAS PubMed Google Scholar
Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H. OLEX2: a complete structure solution, refinement and analysis program. J Appl Cryst. 2009;42:339–41.
Sheldrick GM. SHELXT—integrated space-group and crystal-structure determination. Acta Crystallogr A Found Adv. 2015;71:3–8.
Article PubMed PubMed Central Google Scholar
Sheldrick GM. Crystal structure refinement with SHELXL. Acta Crystallogr C Struct Chem. 2015;71:3–8.
Comments (0)