Thiazoplanomicin, a new thiazolyl peptide antibiotic from the leaf-litter actinomycete Actinoplanes sp. MM794L-181F6

United States Centers for Disease Control and Prevention. Antibiotic resistance threats in the United States 2019. Atlanta, GA: U.S. Department of Health and Human Services, CDC; 2019. https://doi.org/10.15620/cdc:82532.

Cristillo AD, et al. Antimicrobial resistance in Neisseria gonorrhoeae: proceedings of the STAR Sexually transmitted infection—clinical trial group programmatic meeting. Sex Transm Dis. 2019;46:e18–e25.

Article  PubMed  Google Scholar 

Katz AR, et al. Cluster of Neisseria gonorrhoeae isolates with high-level azithromycin resistance and decreased ceftriaxone susceptibility, Hawaii, 2016. Clin Infect Dis. 2017;65:918–23.

Article  PubMed  Google Scholar 

Ohnishi M, et al. Ceftriaxone-resistant Neisseria gonorrhoeae, Japan. Emerg Infect Dis. 2011;17:148–49.

Article  PubMed  PubMed Central  Google Scholar 

Unemo M, Rio CD, Shafer WM. Antimicrobial resistance expressed by Neisseria gonorrhoeae: a major global public health problem in the 21st century. Microbiol Spectr. 2016;4. https://doi.org/10.1128/microbiolspec.EI10-0009-2015.

Wi T, et al. Antimicrobial resistance in Neisseria gonorrhoeae: global surveillance and a call for international collaborative action. PLoS Med. 2017;14:e1002344. https://doi.org/10.1371/journal.pmed.1002344

Article  CAS  PubMed  PubMed Central  Google Scholar 

Alirol E, et al. Multidrug-resistant gonorrhea: a research and development roadmap to discover new medicines. PLoS Med. 2017;14:e1002366. https://doi.org/10.1371/journal.pmed.1002366

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bradford PA, Miller AA, O’Donnell J, Mueller JP. Zoliflodacin: an oral spiropyrimidinetrione antibiotic for the treatment of Neisseria gonorrheae, Including Multi-Drug-Resistant Isolates. ACS Infect Dis. 2020;6:1332–45.

Article  CAS  PubMed  Google Scholar 

Farrell DJ, Sader HS, Rhomberg PR, Scangarella-Oman NE, Flamm RK. In vitro activity of gepotidacin (GSK2140944) against Neisseria gonorrhoeae. Antimicrob Agents Chemother. 2017;61:https://doi.org/10.1128/aac.02047-16.

Li W, et al. Nocathiacins, new thiazolyl peptide antibiotics from Nocardia sp. I. Taxonomy, fermentation and biological activities. J Antibiot. 2003;56:226–31.

Article  CAS  Google Scholar 

Leet JE, et al. Nocathiacins, new thiazolyl peptide antibiotics from Nocardia sp. II. Isolation, characterization, and structure determination. J Antibiot. 2003;56:232–42.

Article  CAS  Google Scholar 

Shen X, Mustafa M, Chen Y, Cao Y, Gao J. Natural thiopeptides as a privileged scaffold for drug discovery and therapeutic development. Med Chem Res. 2019;28:1063–98.

Article  CAS  Google Scholar 

Fujii K, et al. A nonempirical method using LC/MS for determination of the absolute configuration of constituent amino acids in a peptide:  elucidation of limitations of marfey’s method and of its separation mechanism. Anal Chem. 1997;69:3346–52.

Article  CAS  Google Scholar 

Martin J, et al. Kocurin, the true structure of PM181104, an anti-methicillin-resistant Staphylococcus aureus (MRSA) thiazolyl peptide from the marine-derived bacterium Kocuria palustris. Mar Drugs. 2013;11:387–98.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Constantine KL, et al. Conformation and absolute configuration of nocathiacin I determined by NMR spectroscopy and chiral capillary electrophoresis. J Am Chem Soc. 2002;124:7284–5.

Article  CAS  PubMed  Google Scholar 

Kim H, Yoo D, Choi SY, Chun YK, Kim YG. Efficient and stereoselective synthesis of (2S,3S,4S)-3,4-dihydroxyglutamic acid via intramolecular epoxidation. Tetrahedron: Asymmetry. 2008;19:1965–69.

Article  CAS  Google Scholar 

Sasaki T, et al. MJ347-81F4 A & B, novel antibiotics from Amycolatopsis sp.: taxonomic characteristics, fermentation, and antimicrobial activity. J Antibiot. 1998;51:715–21.

Article  CAS  Google Scholar 

Tanaka T, Endo T, Shimizu A, Yoshida R, Suzuki Y. A new antibiotic, multhiomycin. J Antibiot. 1970;23:231–37.

Article  CAS  Google Scholar 

Zhang C, et al. Thiazomycins, thiazolyl peptide antibiotics from Amycolatopsis fastidiosa. J Nat Prod. 2009;72:841–47.

Article  CAS  PubMed  Google Scholar 

Zhang C, et al. Isolation, structure, and antibacterial activity of philipimycin, a thiazolyl peptide discovered from Actinoplanes philippinensis MA7347. J Am Chem Soc. 2008;130:12102–110.

Article  CAS  PubMed  Google Scholar 

Pagano JF, Weinstein MJ, Sout HA, Donovick R. Thiostrepton, a new antibiotic I. In vitro studies. Antibiot Annu. 1955;3:554–9.

PubMed  Google Scholar 

Korzybski T, Koszyk-Gindifer Z, Kurylowicz W. Antibiotics: origin, nature and properties. Oxford: Pergamon; 1967.

Pestka S. Thiostrepton: a ribosomal inhibitor of translocation. Biochem Biophys Res Co. 1970;40:667–74.

Article  CAS  Google Scholar 

Talà et al. Thiostrepton, a resurging drug inhibiting the stringent response to counteract antibiotic-resistance and expression of virulence determinants in Neisseria gonorrhoeae. Front Microbiol. 2023;14. https://doi.org/10.3389/fmicb.2023.1104454.

Pucci MJ, et al. Antimicrobial evaluation of nocathiacins, a thiazole peptide class of antibiotics. Antimicrob Agents Chemother. 2004;48:3697–701.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shimanaka K, et al. Novel antibiotics, amythiamicins. IV. A mutation in the elongation factor Tu gene in a resistant mutant of B. subtilis. J Antibiot. 1995;48:182–4.

Article  CAS  Google Scholar 

Folster JP, et al. MtrR modulates rpoH expression and levels of antimicrobial resistance in Neisseria gonorrhoeae. J Bacteriol. 2009;191:287–97.

Article  CAS  PubMed  Google Scholar 

Johnson PJ, Shafer WM. The transcriptional repressor, MtrR, of the mtrCDE efflux pump operon of Neisseria gonorrhoeae can also serve as an activator of “off target” gene (glnE) expression. Antibiotics. 2015;4:188–97.

Article  PubMed  PubMed Central  Google Scholar 

Lee EH, Rouquette-Loughlin C, Flster JP, Shafer WM. FarR regulates the farAB-encoded efflux pump of Neisseria gonorrhoeae via an MtrR regulatory mechanism. J Bacteriol. 2003;185:7145–52.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pfister P, et al. 23S rRNA base pair 2057–2611 determines ketolide susceptibility and fitness cost of the macrolide resistance mutation 2058A→G. Proc Natl Acad Sci USA. 2005;102:5180–85.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vincent LR, et al. In vivo-selected compensatory mutations restore the fitness cost of mosaic penA alleles that confer ceftriaxone resistance in Neisseria gonorrhoeae. mBio. 2018;9:e01905–17.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Saitou N, Nei M. The neighbor joining method: a new method of constructing phylogenetic trees. Mol Biol Evol. 1987;6:514–25.

Google Scholar 

Larkin MA, et al. Clustal W and Clustal X version 2.0. Bioinformatics. 2007;23:2947–48.

Article  CAS  PubMed  Google Scholar 

Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H. OLEX2: a complete structure solution, refinement and analysis program. J Appl Cryst. 2009;42:339–41.

Article  CAS  Google Scholar 

Sheldrick GM. SHELXT—integrated space-group and crystal-structure determination. Acta Crystallogr A Found Adv. 2015;71:3–8.

Article  PubMed  PubMed Central  Google Scholar 

Sheldrick GM. Crystal structure refinement with SHELXL. Acta Crystallogr C Struct Chem. 2015;71:3–8.

Article  PubMed  PubMed Central  Google Scholar 

Comments (0)

No login
gif