Inhibition of the AP-1/TFPI2 axis contributes to alleviating cerebral ischemia/reperfusion injury by improving blood–brain barrier integrity

Xu J, Wang T, Guo F, Ji E, Zhang Y, Wu H, et al. Systematical identification of the protective effect of Danhong injection and BuChang NaoXinTong capsules on transcription factors in cerebral ischemia mice brain. Oxid Med Cell Longev. 2020;2020:5879852. https://doi.org/10.1155/2020/5879852.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim DY, Zhang H, Park S, Kim Y, Bae CR, Kim YM, et al. CU06-1004 (endothelial dysfunction blocker) ameliorates astrocyte end-feet swelling by stabilizing endothelial cell junctions in cerebral ischemia/reperfusion injury. J Mol Med (Berl). 2020;98(6):875–86. https://doi.org/10.1007/s00109-020-01920-z.

Article  CAS  PubMed  Google Scholar 

Zeng X, Zhang Y-D, Ma R-Y, Chen Y-J, Xiang X-M, Hou D-Y, et al. Activated Drp1 regulates p62-mediated autophagic flux and aggravates inflammation in cerebral ischemia-reperfusion via the ROS-RIP1/RIP3-exosome axis. Mil Med Res. 2022;9(1):25. https://doi.org/10.1186/s40779-022-00383-2.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shen Z, Zheng Y, Wu J, Chen Y, Wu X, Zhou Y, et al. PARK2-dependent mitophagy induced by acidic postconditioning protects against focal cerebral ischemia and extends the reperfusion window. Autophagy. 2017;13(3):473–85. https://doi.org/10.1080/15548627.2016.1274596.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jurcau A, Simion A. Neuroinflammation in cerebral ischemia and ischemia/reperfusion injuries: from pathophysiology to therapeutic strategies. Int J Mol Sci. 2021. https://doi.org/10.3390/ijms23010014.

Article  PubMed  PubMed Central  Google Scholar 

Lv G, Wang GQ, Xia ZX, Wang HX, Liu N, Wei W, et al. Influences of blood lipids on the occurrence and prognosis of hemorrhagic transformation after acute cerebral infarction: a case-control study of 732 patients. Mil Med Res. 2019;6(1):2. https://doi.org/10.1186/s40779-019-0191-z.

Article  PubMed  PubMed Central  Google Scholar 

Yamazaki Y, Shinohara M, Shinohara M, Yamazaki A, Murray ME, Liesinger AM, et al. Selective loss of cortical endothelial tight junction proteins during Alzheimer’s disease progression. Brain. 2019;142(4):1077–92. https://doi.org/10.1093/brain/awz011.

Article  PubMed  PubMed Central  Google Scholar 

Li S, Wang Y, Jiang D, Ni D, Kutyreff CJ, Barnhart TE, et al. Spatiotemporal distribution of agrin after intrathecal injection and its protective role in cerebral ischemia/reperfusion injury. Adv Sci (Weinh). 2020;7(4):1902600. https://doi.org/10.1002/advs.201902600.

Article  CAS  PubMed  Google Scholar 

Miller JP, Holcomb J, Al-Ramahi I, de Haro M, Gafni J, Zhang N, et al. Matrix metalloproteinases are modifiers of huntingtin proteolysis and toxicity in Huntington’s disease. Neuron. 2010;67(2):199–212. https://doi.org/10.1016/j.neuron.2010.06.021.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Underly RG, Levy M, Hartmann DA, Grant RI, Watson AN, Shih AY. Pericytes as inducers of rapid, matrix metalloproteinase-9-dependent capillary damage during ischemia. J Neurosci. 2017;37(1):129–40. https://doi.org/10.1523/jneurosci.2891-16.2016.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shi Y, Zhang L, Pu H, Mao L, Hu X, Jiang X, et al. Rapid endothelial cytoskeletal reorganization enables early blood-brain barrier disruption and long-term ischaemic reperfusion brain injury. Nat Commun. 2016;7:10523. https://doi.org/10.1038/ncomms10523.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Seanoon K, Payongsri P, Vivithanaporn P, Sirachainan N, Chuansumrit A, Hongeng S, et al. Mutations of TFPI-binding exosites on factor VII cause bleeding phenotypes in factor VII deficiency. Blood Adv. 2022;6(22):5887–97. https://doi.org/10.1182/bloodadvances.2022007560.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Karmakar D, Maity J, Mondal P, Shyam Chowdhury P, Sikdar N, Karmakar P, et al. E2F5 promotes prostate cancer cell migration and invasion through regulation of TFPI2, MMP-2 and MMP-9. Carcinogenesis. 2020;41(12):1767–80. https://doi.org/10.1093/carcin/bgaa043.

Article  CAS  PubMed  Google Scholar 

Guan G, Xie J, Dai Y, Han H. TFPI2 suppresses the interaction of TGF-β2 pathway regulators to promote endothelial-mesenchymal transition in diabetic nephropathy. J Biol Chem. 2022;298(3): 101725. https://doi.org/10.1016/j.jbc.2022.101725.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ivanciu L, Gerard RD, Tang H, Lupu F, Lupu C. Adenovirus-mediated expression of tissue factor pathway inhibitor-2 inhibits endothelial cell migration and angiogenesis. Arterioscler Thromb Vasc Biol. 2007;27(2):310–6. https://doi.org/10.1161/01.ATV.0000254147.89321.cf.

Article  CAS  PubMed  Google Scholar 

Kremer V, Bink DI, Stanicek L, van Ingen E, Gimbel T, Hilderink S, et al. MEG8 regulates tissue factor pathway inhibitor 2 (TFPI2) expression in the endothelium. Sci Rep. 2022;12(1):843. https://doi.org/10.1038/s41598-022-04812-z.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shibata S, Kashiwagi M, Morgan BA, Georgopoulos K. Functional interactions between Mi-2β and AP1 complexes control response and recovery from skin barrier disruption. J Exp Med. 2020. https://doi.org/10.1084/jem.20182402.

Article  PubMed  Google Scholar 

Wang T, Jin X, Liao Y, Sun Q, Luo C, Wang G, et al. Association of NF-κB and AP-1 with MMP-9 overexpression in 2-chloroethanol exposed rat astrocytes. Cells. 2018. https://doi.org/10.3390/cells7080096.

Article  PubMed  PubMed Central  Google Scholar 

Shaulian E, Karin M. AP-1 as a regulator of cell life and death. Nat Cell Biol. 2002;4(5):E131–6. https://doi.org/10.1038/ncb0502-e131.

Article  CAS  PubMed  Google Scholar 

Raivich G, Behrens A. Role of the AP-1 transcription factor c-Jun in developing, adult and injured brain. Prog Neurobiol. 2006;78(6):347–63. https://doi.org/10.1016/j.pneurobio.2006.03.006.

Article  CAS  PubMed  Google Scholar 

Dai WJ, Funk A, Herdegen T, Unger T, Culman J. Blockade of central angiotensin AT(1) receptors improves neurological outcome and reduces expression of AP-1 transcription factors after focal brain ischemia in rats. Stroke. 1999;30(11):2391–8; discussion 8–9. https://doi.org/10.1161/01.str.30.11.2391.

Zingarelli B, Hake PW, Yang Z, O’Connor M, Denenberg A, Wong HR. Absence of inducible nitric oxide synthase modulates early reperfusion-induced NF-kappaB and AP-1 activation and enhances myocardial damage. Faseb j. 2002;16(3):327–42. https://doi.org/10.1096/fj.01-0533com.

Article  CAS  PubMed  Google Scholar 

Zwacka RM, Zhang Y, Zhou W, Halldorson J, Engelhardt JF. Ischemia/reperfusion injury in the liver of BALB/c mice activates AP-1 and nuclear factor kappaB independently of IkappaB degradation. Hepatology. 1998;28(4):1022–30. https://doi.org/10.1002/hep.510280417.

Article  CAS  PubMed  Google Scholar 

Kuts R, Frank D, Gruenbaum BF, Grinshpun J, Melamed I, Knyazer B, et al. A novel method for assessing cerebral edema, infarcted zone and blood-brain barrier breakdown in a single post-stroke rodent brain. Front Neurosci. 2019;13:1105. https://doi.org/10.3389/fnins.2019.01105.

Article  PubMed  PubMed Central  Google Scholar 

Longa EZ, Weinstein PR, Carlson S, Cummins R. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke. 1989;20(1):84–91. https://doi.org/10.1161/01.str.20.1.84.

Article  CAS  PubMed  Google Scholar 

Lu H, Ashiqueali R, Lin CI, Walchale A, Clendaniel V, Matheson R, et al. Histone deacetylase 3 inhibition decreases cerebral edema and protects the blood-brain barrier after stroke. Mol Neurobiol. 2023;60(1):235–46. https://doi.org/10.1007/s12035-022-03083-z.

Article  CAS  PubMed  Google Scholar 

Kim GS, Yang L, Zhang G, Zhao H, Selim M, McCullough LD, et al. Critical role of sphingosine-1-phosphate receptor-2 in the disruption of cerebrovascular integrity in experimental stroke. Nat Commun. 2015;6:7893. https://doi.org/10.1038/ncomms8893.

Comments (0)

No login
gif