Hall B, Alonzo M, Texter K, Garg V, Zhao MT. Probing single ventricle heart defects with patient-derived induced pluripotent stem cells and emerging technologies. Birth Defects Res. 2022;114(16):959–71. https://doi.org/10.1002/bdr2.1989.
Article CAS PubMed PubMed Central Google Scholar
Lubert AM, Cedars A, Almond CS, Amdani S, Conway J, Friedland-Little JM, Gajarski RJ, Kindel SJ, Lorts A, Morales DLS, O’Connor MJ, Peng DM, Rosenthal DN, Smyth L, Sutcliffe DL, Schumacher KR. Considerations for Advanced Heart Failure Consultation in Individuals With Fontan Circulation: Recommendations From ACTION. Circ Heart Fail. 2023;16(2):e010123. https://doi.org/10.1161/CIRCHEARTFAILURE.122.010123.
Harh JY, Paul MH, Gallen WJ, Friedberg DZ, Kaplan S. Experimental production of hypoplastic left heart syndrome in the chick embryo. Am J Cardiol. 1973;31(1):51–6. https://doi.org/10.1016/0002-9149(73)90810-2.
Article CAS PubMed Google Scholar
Sedmera D, Pexieder T, Rychterova V, Hu N, Clark EB. Remodeling of chick embryonic ventricular myoarchitecture under experimentally changed loading conditions. The Anatomical Record. 1999;254(2):238–52. https://doi.org/10.1002/(sici)1097-0185(19990201)254.
Article CAS PubMed Google Scholar
deAlmeida A, McQuinn T, Sedmera D. Increased ventricular preload is compensated by myocyte proliferation in normal and hypoplastic fetal chick left ventricle. Circ Res. 2007;100(9):1363–70. https://doi.org/101161/01.RES.0000266606.88463.cb
Article CAS PubMed Google Scholar
Lashkarinia SS, Chan WX, Motakis E, Ho S, Siddiqui HB, Coban M, Sevgin B, Pekkan K, Yap CH. Myocardial Biomechanics and the Consequent Differentially Expressed Genes of the Left Atrial Ligation Chick Embryonic Model of Hypoplastic Left Heart Syndrome. Ann Biomed Eng. 2023;51(5):1063–78. https://doi.org/10.1007/s10439-023-03187-0.
Article PubMed PubMed Central Google Scholar
Pesevski Z, Kvasilova A, Stopkova T, Nanka O, Drobna Krejci E, Buffinton C, Kockova R, Eckhardt A, Sedmera D. Endocardial Fibroelastosis is Secondary to Hemodynamic Alterations in the Chick Embryonic Model of Hypoplastic Left Heart Syndrome. Dev Dyn. 2018;247(3):509–20. https://doi.org/10.1002/dvdy.24521.
Article CAS PubMed Google Scholar
Reuter MS, Sokolowski DJ, Javier Diaz-Mejia J, Keunen J, de Vrijer B, Chan C, Wang L, Ryan G, Chiasson DA, Ketela T, Scherer SW, Wilson MD, Jaeggi E, Chaturvedi RR. Decreased left heart flow in fetal lambs causes left heart hypoplasia and pro-fibrotic tissue remodeling. Commun Biol. 2023;6(1):770. https://doi.org/10.1038/s42003-023-05132-2. Epub 2023/07/23.PubMed PMID: 37481629; PMCID: PMC 10363152.
Article CAS PubMed PubMed Central Google Scholar
Rahman A, DeYoung T, Cahill LS, Yee Y, Debebe SK, Botelho O, Seed M, Chaturvedi RR, Sled JG. A mouse model of hypoplastic left heart syndrome demonstrating left heart hypoplasia and retrograde aortic arch flow. Dis Model Mech. 2021;14(11). https://doi.org/10.1242/dmm.049077.
Tworetzky W, Wilkins-Haug L, Jennings RW, van der Velde ME, Marshall AC, Marx GR, Colan SD, Benson CB, Lock JE, Perry SB. Balloon dilation of severe aortic stenosis in the fetus: potential for prevention of hypoplastic left heart syndrome: candidate selection, technique, and results of successful intervention. Circulation. 2004;110(15):2125–31. https://doi.org/10.1161/01.CIR.0000144357.29279.54.
Liu X, Yagi H, Saeed S, Bais AS, Gabriel GC, Chen Z, Peterson KA, Li Y, Schwartz MC, Reynolds WT, Saydmohammed M, Gibbs B, Wu Y, Devine W, Chatterjee B, Klena NT, Kostka D, de Mesy Bentley KL, Ganapathiraju MK, Dexheimer P, Leatherbury L, Khalifa O, Bhagat A, Zahid M, Pu W, Watkins S, Grossfeld P, Murray SA, Porter GA Jr, Tsang M, Martin LJ, Benson DW, Aronow BJ, Lo CW. The complex genetics of hypoplastic left heart syndrome. Nat Genet. 2017;49(7):1152–9. https://doi.org/10.1038/ng.3870.
Article CAS PubMed PubMed Central Google Scholar
Wilson RL, Troja W, Courtney J, Williams A, Jones HN. Placental and fetal characteristics of the Ohia mouse line recapitulate outcomes in human hypoplastic left heart syndrome. Placenta. 2022;117:131–8. https://doi.org/10.1016/j.placenta.2021.12.001.
Article CAS PubMed Google Scholar
Gabriel GC, Devine W, Redel BK, Whitworth KM, Samuel M, Spate LD, Cecil RF, Prather RS, Wu Y, Wells KD, Lo CW. Cardiovascular Development and Congenital Heart Disease Modeling in the Pig. J Am Heart Assoc. 2021;10(14):e021631. https://doi.org/10.1161/JAHA.121.021631.
Article CAS PubMed PubMed Central Google Scholar
Kim MS, Fleres B, Lovett J, Anfinson M, Samudrala SSK, Kelly LJ, Teigen LE, Cavanaugh M, Marquez M, Geurts AM, Lough JW, Mitchell ME, Fitts RH, Tomita-Mitchell A. Contractility of Induced Pluripotent Stem Cell-Cardiomyocytes With an MYH6 Head Domain Variant Associated With Hypoplastic Left Heart Syndrome. Front Cell Dev Biol. 2020;8:440. https://doi.org/10.3389/fcell.2020.00440.
Article PubMed PubMed Central Google Scholar
McBride KL, Riley MF, Zender GA, Fitzgerald-Butt SM, Towbin JA, Belmont JW, Cole SE. NOTCH1 mutations in individuals with left ventricular outflow tract malformations reduce ligand-induced signaling. Hum Mol Genet. 2008;17(18):2886–93. https://doi.org/10.1093/hmg/ddn187.
Article CAS PubMed PubMed Central Google Scholar
Garg V, Muth AN, Ransom JF, Schluterman MK, Barnes R, King IN, Grossfeld PD, Srivastava D. Mutations in NOTCH1 cause aortic valve disease. Nature. 2005;437(7056):270–4. https://doi.org/10.1038/nature03940.
Article CAS PubMed Google Scholar
Ye S, Wang C, Xu Z, Lin H, Wan X, Yu Y, Adhicary S, Zhang JZ, Zhou Y, Liu C, Alonzo M, Bi J, Ramirez-Navarro A, Deschenes I, Ma Q, Garg V, Wu JC, Zhao MT. Impaired Human Cardiac Cell Development due to NOTCH1 Deficiency. Circ Res. 2023;132(2):187–20. https://doi.org/10.1161/CIRCRESAHA.122.321398.
Article CAS PubMed Google Scholar
Yang C, Xu Y, Yu M, Lee D, Alharti S, Hellen N, Ahmad Shaik N, Banaganapalli B, Sheikh Ali Mohamoud H, Elango R, Przyborski S, Tenin G, Williams S, O’Sullivan J, Al-Radi OO, Atta J, Harding SE, Keavney B, Lako M, Armstrong L. Induced pluripotent stem cell modelling of HLHS underlines the contribution of dysfunctional NOTCH signalling to impaired cardiogenesis. Hum Mol Genet. 2017;26(16):3031–45. https://doi.org/10.1093/hmg/ddx140.
Article CAS PubMed PubMed Central Google Scholar
Paige SL, Galdos FX, Lee S, Chin ET, Ranjbarvaziri S, Feyen DAM, Darsha AK, Xu S, Ryan JA, Beck AL, Qureshi MY, Miao Y, Gu M, Bernstein D, Nelson TJ, Mercola M, Rabinovitch M, Ashley EA, Parikh VN, Wu SM. Patient-Specific Induced Pluripotent Stem Cells Implicate Intrinsic Impaired Contractility in Hypoplastic Left Heart Syndrome. Circulation. 2020;142(16):1605–8. https://doi.org/10.1161/CIRCULATIONAHA.119.045317.
Article PubMed PubMed Central Google Scholar
Xu X, Jin K, Bais AS, Zhu W, Yagi H, Feinstein TN, Nguyen PK, Criscione JD, Liu X, Beutner G, Karunakaran KB, Rao KS, He H, Adams P, Kuo CK, Kostka D, Pryhuber GS, Shiva S, Ganapathiraju MK, Porter GA Jr, Lin JI, Aronow B, Lo CW. Uncompensated mitochondrial oxidative stress underlies heart failure in an iPSC-derived model of congenital heart disease. Cell Stem Cell. 2022;29(5):840–55. https://doi.org/10.1016/j.stem.2022.03.003.
Article CAS PubMed PubMed Central Google Scholar
Yu Z, Zhou X, Liu Z, Pastrana-Gomez V, Liu Y, Guo M, Tian L, Nelson TJ, Wang N, Mital S, Chitayat D, Wu JC, Rabinovitch M, Wu SM, Snyder MP, Miao Y, Gu M. KMT2D-NOTCH Mediates Coronary Abnormalities in Hypoplastic Left Heart Syndrome. Circ Res. 2022;131(3):280–2. https://doi.org/10.1161/CIRCRESAHA.122.320783.
Article CAS PubMed PubMed Central Google Scholar
Miao Y, Tian L, Martin M, Paige SL, Galdos FX, Li J, Klein A, Zhang H, Ma N, Wei Y, Stewart M, Lee S, Moonen JR, Zhang B, Grossfeld P, Mital S, Chitayat D, Wu JC, Rabinovitch M, Nelson TJ, Nie S, Wu SM, Gu M. Intrinsic Endocardial Defects Contribute to Hypoplastic Left Heart Syndrome. Cell Stem Cell. 2020;27(4):574–89. https://doi.org/10.1016/j.stem.2020.07.015.
Article CAS PubMed PubMed Central Google Scholar
Hofbauer P, Jahnel SM, Papai N, Giesshammer M, Deyett A, Schmidt C, Penc M, Tavernini K, Grdseloff N, Meledeth C, Ginistrelli LC, Ctortecka C, Salic S, Novatchkova M, Mendjan S. Cardioids reveal self-organizing principles of human cardiogenesis. Cell. 2021;184(12):3299–317. https://doi.org/10.1016/j.cell.2021.04.034.
Article CAS PubMed Google Scholar
Schmidt C, Deyett A, Ilmer T, Haendeler S, Torres Caballero A, Novatchkova M, Netzer MA, Ceci Ginistrelli L, Mancheno Juncosa E, Bhattacharya T, Mujadzic A, Pimpale L, Jahnel SM, Cirigliano M, Reumann D, Tavernini K, Papai N, Hering S, Hofbauer P, Mendjan S. Multi-chamber cardioids unravel human heart development and cardiac defects. Cell. 2023;186(25):5587–605. https://doi.org/10.1016/j.cell.2023.10.030.
Comments (0)