Ahmad I, Cimdins A, Beske T, Römling U (2017) Detailed analysis of c-di-GMP mediated regulation of csgD expression in Salmonella typhimurium. BMC Microbiol 17:27. https://doi.org/10.1186/s12866-017-0934-5
Article CAS PubMed PubMed Central Google Scholar
Balasubramanian R, Im J, Lee J-S et al (2019) The global burden and epidemiology of invasive non-typhoidal Salmonella infections. Hum Vaccin Immunother 15:1421–1426. https://doi.org/10.1080/21645515.2018.1504717
Barbieri NL, Nicholson B, Hussein A et al (2014) FNR regulates expression of important virulence factors contributing to pathogenicity of Uropathogenic Escherichia coli. Infect Immun 82:5086–5098. https://doi.org/10.1128/IAI.02315-14
Article CAS PubMed PubMed Central Google Scholar
Barrow PA, Berchieri A, de Freitas Neto OC, Lovell M (2015) The contribution of aerobic and anaerobic respiration to intestinal colonization and virulence for Salmonella typhimurium in the chicken. Avian Pathol 44:401–407. https://doi.org/10.1080/03079457.2015.1062841
Article CAS PubMed Google Scholar
Barthel M, Hapfelmeier S, Quintanilla-Martínez L et al (2003) Pretreatment of mice with streptomycin provides a Salmonella enterica Serovar Typhimurium Colitis Model that allows analysis of both Pathogen and Host. Infect Immun 71:2839–2858. https://doi.org/10.1128/IAI.71.5.2839-2858.2003
Article CAS PubMed PubMed Central Google Scholar
Behera P, Nikhil KC, Kumar A et al (2020) Comparative proteomic analysis of Salmonella Typhimurium wild type and its isogenic fnr null mutant during anaerobiosis reveals new insight into bacterial metabolism and virulence. Microb Pathog 140:103936. https://doi.org/10.1016/j.micpath.2019.103936
Article CAS PubMed Google Scholar
Behnsen J, Perez-Lopez A, Nuccio S-P, Raffatellu M (2015) Exploiting host immunity: the Salmonella paradigm. Trends Immunol 36:112–120. https://doi.org/10.1016/j.it.2014.12.003
Article CAS PubMed PubMed Central Google Scholar
Brunelle BW, Bearson BL, Bearson SMD, Casey TA (2017) Multidrug-Resistant Salmonella enterica Serovar Typhimurium isolates are resistant to Antibiotics that influence their swimming and swarming motility. https://doi.org/10.1128/mSphere.00306-17. mSphere 2:
Buettner FFR, Bendalla IM, Bossé JT et al (2009) Analysis of the Actinobacillus pleuropneumoniae HlyX (FNR) regulon and identification of iron-regulated protein B as an essential virulence factor. Proteomics 9:2383–2398. https://doi.org/10.1002/pmic.200800439
Article CAS PubMed Google Scholar
Constantinidou C, Hobman JL, Griffiths L et al (2006) A reassessment of the FNR Regulon and Transcriptomic Analysis of the effects of Nitrate, Nitrite, NarXL, and NarQP as Escherichia coli K12 adapts from aerobic to anaerobic growth. J Biol Chem 281:4802–4815. https://doi.org/10.1074/jbc.M512312200
Article CAS PubMed Google Scholar
Croswell A, Amir E, Teggatz P et al (2009) Prolonged impact of antibiotics on intestinal Microbial Ecology and susceptibility to enteric Salmonella infection. Infect Immun 77:2741–2753. https://doi.org/10.1128/IAI.00006-09
Article CAS PubMed PubMed Central Google Scholar
Dar MA, Ahmad SM, Bhat SA et al (2017) Salmonella typhimurium in poultry: a review. Worlds Poult Sci J 73:345–354. https://doi.org/10.1017/S0043933917000204
Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proceedings of the National Academy of Sciences 97:6640–6645. https://doi.org/10.1073/pnas.120163297
Ehrhardt K, Becker A-L, Grassl GA (2023) Determinants of persistent Salmonella infections. Curr Opin Immunol 82:102306. https://doi.org/10.1016/j.coi.2023.102306
Article CAS PubMed Google Scholar
Evans MR, Fink RC, Vazquez-Torres A et al (2011) Analysis of the ArcA regulon in anaerobically grown Salmonella enterica Sv. Typhimurium. BMC Microbiol 11:58. https://doi.org/10.1186/1471-2180-11-58
Article CAS PubMed PubMed Central Google Scholar
Fink RC, Evans MR, Porwollik S et al (2007) FNR is a Global Regulator of Virulence and anaerobic metabolism in Salmonella enterica Serovar Typhimurium (ATCC 14028s). J Bacteriol 189:2262–2273. https://doi.org/10.1128/JB.00726-06
Article CAS PubMed PubMed Central Google Scholar
Gerstel U, Römling U (2003) The csgD promoter, a control unit for biofilm formation in Salmonella typhimurium. Res Microbiol 154:659–667. https://doi.org/10.1016/j.resmic.2003.08.005
Article CAS PubMed Google Scholar
Jensen PØ, Givskov M, Bjarnsholt T, Moser C (2010) The immune system vs. Pseudomonas aeruginosa biofilms. FEMS Immunol Med Microbiol 59:292–305. https://doi.org/10.1111/j.1574-695X.2010.00706.x
Article CAS PubMed Google Scholar
Jervis AJ, Crack JC, White G et al (2009) The O 2 sensitivity of the transcription factor FNR is controlled by Ser24 modulating the kinetics of [4Fe-4S] to [2Fe-2S] conversion. Proceedings of the National Academy of Sciences 106:4659–4664. https://doi.org/10.1073/pnas.0804943106
Jones SA, Gibson T, Maltby RC et al (2011) Anaerobic respiration of Escherichia coli in the mouse intestine. Infect Immun 79:4218–4226. https://doi.org/10.1128/IAI.05395-11
Article CAS PubMed PubMed Central Google Scholar
Kado T, Kashimoto T, Yamazaki K, Ueno S (2017) Importance of fumarate and nitrate reduction regulatory protein for intestinal proliferation of Vibrio vulnificus. FEMS Microbiol Lett 364:fnw274. https://doi.org/10.1093/femsle/fnw274
Article CAS PubMed Google Scholar
Kutsukake K (1997) Autogenous and global control of the flagellar master operon, flhD, in Salmonella typhimurium. Mol Gen Genet 254:440–448. https://doi.org/10.1007/s004380050437
Article CAS PubMed Google Scholar
Lamas A, Regal P, Vázquez B et al (2018) Influence of milk, chicken residues and oxygen levels on biofilm formation on stainless steel, gene expression and small RNAs in Salmonella enterica. Food Control 90:1–9. https://doi.org/10.1016/j.foodcont.2018.02.023
Lopez CA, Rivera-Chávez F, Byndloss MX, Bäumler AJ (2015) The Periplasmic Nitrate reductase NapABC supports Luminal Growth of Salmonella enterica Serovar Typhimurium during Colitis. Infect Immun 83:3470–3478. https://doi.org/10.1128/IAI.00351-15
Article CAS PubMed PubMed Central Google Scholar
Mangalea MR, Borlee BR (2022) The NarX-NarL two-component system regulates biofilm formation, natural product biosynthesis, and host-associated survival in Burkholderia pseudomallei. Sci Rep 12:203. https://doi.org/10.1038/s41598-021-04053-6
Article CAS PubMed PubMed Central Google Scholar
Mani P, Priyadarsini S, Channabasappa K N, et al (2024) Role of narL gene in the pathogenesis of Salmonella Typhimurium. J Basic Microbiol 64. https://doi.org/10.1002/jobm.202300456
Marchello CS, Fiorino F, Pettini E et al (2021) Incidence of non-typhoidal Salmonella invasive disease: a systematic review and meta-analysis. J Infect 83:523–532. https://doi.org/10.1016/j.jinf.2021.06.029
Article PubMed PubMed Central Google Scholar
Martín-Rodríguez AJ, Rhen M, Melican K, Richter-Dahlfors A (2020) Nitrate metabolism modulates biosynthesis of Biofilm Components in Uropathogenic Escherichia coli and acts as a fitness factor during experimental urinary tract infection. https://doi.org/10.3389/fmicb.2020.00026. Front Microbiol 11:
Nikhil KC, Noatia L, Priyadarsini S et al (2022) Recoding anaerobic regulator fnr of Salmonella Typhimurium attenuates it’s pathogenicity. Microb Pathog 168:105591. https://doi.org/10.1016/j.micpath.2022.105591
Article CAS PubMed Google Scholar
Nikhil KC, Priyadarsini S, Pashupathi M et al (2021) Regulatory role of Fnr gene in growth and Tola gene expression in Salmonella typhimurium. Indian J Animal Res 55(7):774–779. https://doi.org/10.18805/IJAR.B-4120
Overton TW, Griffiths L, Patel MD et al (2006) Microarray analysis of gene regulation by oxygen, nitrate, nitrite, FNR, NarL and NarP during anaerobic growth of Escherichia coli: new insights into microbial physiology. Biochem Soc Trans 34:104–107. https://doi.org/10.1042/BST0340104
Article CAS PubMed Google Scholar
Palmer KL, Brown SA, Whiteley M (2007) Membrane-bound nitrate reductase is required for anaerobic growth in cystic fibrosis Sputum. J Bacteriol 189:4449–4455. https://doi.org/10.1128/JB.00162-07
Comments (0)