Acheampong A, Li L, Elsherbiny SM et al (2023) A crosswalk on the genetic and conventional strategies for enhancing astaxanthin production in Haematococcus pluvialis. Crit Rev Biotechnol. https://doi.org/10.1080/07388551.2023.2240009
Alcaino J, Baeza M, Cifuentes V (2014) Astaxanthin and Related Xanthophylls. 187–208. https://doi.org/10.1007/978-1-4939-1191-2
Ananda N, Vadlani PV (2011) Substrates influence stimulatory effect of mevalonic acid on carotenoid production in red yeasts. Cereal Chem. https://doi.org/10.1094/CCHEM-10-10-0149
Binder U, Navarro-Mendoza MI, Naschberger V et al (2018) Generation of a Mucor circinelloides reporter strain—A promising new tool to study antifungal drug efficacy and mucormycosis. Genes (Basel). https://doi.org/10.3390/genes9120613
Calo P, de Miguel T, Velázquez JB, Villa TG (1995) Mevalonic acid increases trans-astaxanthin and carotenoid biosynthesis in Phaffia rhodozyma. Biotechnol Lett. https://doi.org/10.1007/BF00129380
Chaney AL, Marbach EP (1962) Modified reagents for determination of urea and ammonia. Clin Chem 8:130–132. https://doi.org/10.1093/clinchem/8.2.130
Article CAS PubMed Google Scholar
Chang JJ, Thia C, Lin HY et al (2015) Integrating an algal β-carotene hydroxylase gene into a designed carotenoid-biosynthesis pathway increases carotenoid production in yeast. Bioresour Technol. https://doi.org/10.1016/j.biortech.2014.11.097
Chaturvedi S, Gupta AK, Bhattacharya A et al (2021) Overexpression and repression of key rate-limiting enzymes (acetyl CoA carboxylase and HMG reductase) to enhance fatty acid production from Rhodotorula mucilaginosa. J Basic Microbiol. https://doi.org/10.1002/jobm.202000407
Cifuentes AS, González MA, Vargas S et al (2003) Optimization of biomass, total carotenoids and astaxanthin production in Haematococcus pluvialis Flotow strain Steptoe (Nevada, USA) under laboratory conditions. Biol Res 36:343–357. https://doi.org/10.4067/S0716-97602003000300006
Article CAS PubMed Google Scholar
Csernetics Á, Nagy G, Iturriaga EA et al (2011) Expression of three isoprenoid biosynthesis genes and their effects on the carotenoid production of the zygomycete Mucor circinelloides. 48:696–703. https://doi.org/10.1016/j.fgb.2011.03.006
Csernetics Á, Tóth E, Farkas A et al (2014) Expression of a bacterial ß-carotene hydroxylase in canthaxanthin producing mutant Mucor circinelloides strains. Acta Biol Szeged 58:139–146. http://www2.sci.u-szeged.hu/ABS
Csernetics Á, Tóth E, Farkas A et al (2015) Expression of Xanthophyllomyces dendrorhous cytochrome-P450 hydroxylase and reductase in Mucor circinelloides. World J Microbiol Biotechnol. https://doi.org/10.1007/s11274-014-1784-z
Do TT, Ong BN, Tran MLN et al (2019) Biomass and astaxanthin productivities of Haematococcus pluvialis in an angled twin-layer porous substrate photobioreactor: Effect of inoculum density and storage time. Biology (Basel) 8. https://doi.org/10.3390/biology8030068
Fakhri S, Abbaszadeh F, Dargahi L, Jorjani M (2018) Astaxanthin: A mechanistic review on its biological activities and health benefits. Pharmacol Res. https://doi.org/10.1016/j.phrs.2018.08.012
Fazili ABA, Shah AM, Albeshr MF et al (2022a) Overexpression of the Mitochondrial Malic Enzyme Genes (malC and malD) Improved the Lipid Accumulation in Mucor circinelloides WJ11. Front Microbiol. https://doi.org/10.3389/fmicb.2022.919364
Article PubMed PubMed Central Google Scholar
Fazili ABA, Shah AM, Zan X et al (2022b) Mucor circinelloides: a model organism for oleaginous fungi and its potential applications in bioactive lipid production. Microb Cell Fact. https://doi.org/10.1186/s12934-022-01758-9
Article PubMed PubMed Central Google Scholar
Galarza JI, Gimpel JA, Rojas V et al (2018) Over-accumulation of astaxanthin in Haematococcus pluvialis through chloroplast genetic engineering. Algal Res. https://doi.org/10.1016/j.algal.2018.02.024
Gao Z, Meng C, Zhang X et al (2012) Differential expression of carotenogenic genes, associated changes on Astaxanthin production and photosynthesis features induced by JA in H. pluvialis. PLoS ONE. https://doi.org/10.1371/journal.pone.0042243
Article PubMed PubMed Central Google Scholar
Gao S, Tong Y, Zhu L et al (2017) Iterative integration of multiple-copy pathway genes in Yarrowia lipolytica for heterologous β-carotene production. Metab Eng. https://doi.org/10.1016/j.ymben.2017.04.004
Garre V, Barredo JL, Iturriaga EA (2015) Transformation of Mucor circinelloides f. lusitanicus Protoplast. https://doi.org/10.1007/978-3-319-10142-2_4
Gustafsson C, Govindarajan S, Minshull J (2004) Codon bias and heterologous protein expression. Trends Biotechnol. https://doi.org/10.1016/j.tibtech.2004.04.006
Gutiérrez A, López-García S, Garre V (2011) High reliability transformation of the basal fungus Mucor circinelloides by electroporation. J Microbiol Methods 84:442–446. https://doi.org/10.1016/j.mimet.2011.01.002
Article CAS PubMed Google Scholar
Han D, Li Y, Hu Q (2013) Astaxanthin in microalgae: Pathways, functions and biotechnological implications. Algae 28:131–147. https://doi.org/10.4490/algae.2013.28.2.131
Harker M, Young AJ (1995) Inhibition of astaxanthin synthesis in the green alga, Haematococcus pluvialis. Eur J Phycol. https://doi.org/10.1080/09670269500650961
Iturriaga EA, Alvarez MI, Eslava AP, Papp T (2018) Expression vectors and gene fusions for the directed modification of the carotenoid biosynthesis pathway in Mucor circinelloides. In: Methods in Molecular Biology. doi.10.1007/978-1-4939-8742-9_14. PMID: 30109635
Jannel S, Caro Y, Bermudes M, Petit T (2020) Novel insights into the biotechnological production of Haematococcus pluvialis-derived astaxanthin: Advances and key challenges to allow its industrial use as novel food ingredient. J Mar Sci Eng. https://doi.org/10.3390/jmse8100789
Jeong TH, Cho YS, Choi SS et al (2018) Enhanced production of astaxanthin by metabolically recombinant non-mevalonate pathway in Escherichia coli. Microbiol Biotechnol Lett. https://doi.org/10.4014/mbl.1801.01007
Kathiresan S, Chandrashekar A, Ravishankar GA, Sarada R (2015) Regulation of astaxanthin and its intermediates through cloning and genetic transformation of β-carotene ketolase in Haematococcus pluvialis. J Biotechnol 196–197:33–41. https://doi.org/10.1016/j.jbiotec.2015.01.006
Article CAS PubMed Google Scholar
Kendrick A, Ratledge C (1992) Lipid formation in the oleaginous mould Entomophthora exitalis grown in continuous culture: effects of growth rate, temperature and dissolved oxygen tension on polyunsaturated fatty acids. Appl Microbiol Biotechnol. https://doi.org/10.1007/BF00174196
Khan MAK, Yang J, Hussain SA et al (2019) Construction of DGLA producing cell factory by genetic modification of Mucor circinelloides. Microb Cell Fact 18. https://doi.org/10.1186/s12934-019-1110-4
Li Z, Yang H, Zheng C et al (2022) Effectively Improve the Astaxanthin Production by Combined Additives Regulating Different Metabolic Nodes in Phaffia rhodozyma. Front Bioeng Biotechnol. https://doi.org/10.3389/fbioe.2021.812309
Masojídek J, Torzillo G (2008) Mass Cultivation of Freshwater Microalgae. In: Encyclopedia of Ecology, Five-Volume Set. https://doi.org/10.1016/B978-008045405-4.00830-2
Miao L, Chi S, Wu M et al (2019) Deregulation of phytoene-β-carotene synthase results in derepression of astaxanthin synthesis at high glucose concentration in Phaffia rhodozyma astaxanthin-overproducing strain MK19. BMC Microbiol. https://doi.org/10.1186/s12866-019-1507-6
Article PubMed PubMed Central Google Scholar
Naguib YMA (2000) Antioxidant activities of astaxanthin and related carotenoids. J Agric Food Chem 48:1150–1154. https://doi.org/10.1021/jf991106k
Article CAS PubMed Google Scholar
Nagy G, Farkas A, Csernetics Á et al (2014) Transcription of the three HMG-CoA reductase genes of Mucor circinelloides. BMC Microbiol 14:93. https://doi.org/10.1186/1471-2180-14-93
Article CAS PubMed PubMed Central Google Scholar
Navarro E, Sandmann G, Torres-Martínez S (1995) Mutants of the Carotenoid Biosynthetic Pathway of Mucor circinelloides. Exp Mycol. https://doi.org/10.1006/emyc.1995.1023
Navarro E, Lorca-Pascual J, Quiles-Rosillo M et al (2001) A negative regulator of light-inducible carotenogenesis in Mucor circinelloides. Mol Genet Genomics 266:463–470. https://doi.org/10.1007/s004380100558
Article CAS PubMed Google Scholar
Naz T, Nazir Y, Nosheen S et al (2020a) Redirecting Metabolic Flux towards the Mevalonate Pathway for Enhanced β-Carotene Production in M. circinelloides CBS 277.49. Biomed Res Int. https://doi.org/10.1155/2020/8890269
Comments (0)