Metabolic engineering of Mucor circinelloides to improve astaxanthin production

Acheampong A, Li L, Elsherbiny SM et al (2023) A crosswalk on the genetic and conventional strategies for enhancing astaxanthin production in Haematococcus pluvialis. Crit Rev Biotechnol. https://doi.org/10.1080/07388551.2023.2240009

Article  PubMed  Google Scholar 

Alcaino J, Baeza M, Cifuentes V (2014) Astaxanthin and Related Xanthophylls. 187–208. https://doi.org/10.1007/978-1-4939-1191-2

Ananda N, Vadlani PV (2011) Substrates influence stimulatory effect of mevalonic acid on carotenoid production in red yeasts. Cereal Chem. https://doi.org/10.1094/CCHEM-10-10-0149

Article  Google Scholar 

Binder U, Navarro-Mendoza MI, Naschberger V et al (2018) Generation of a Mucor circinelloides reporter strain—A promising new tool to study antifungal drug efficacy and mucormycosis. Genes (Basel). https://doi.org/10.3390/genes9120613

Article  PubMed  Google Scholar 

Calo P, de Miguel T, Velázquez JB, Villa TG (1995) Mevalonic acid increases trans-astaxanthin and carotenoid biosynthesis in Phaffia rhodozyma. Biotechnol Lett. https://doi.org/10.1007/BF00129380

Article  Google Scholar 

Chaney AL, Marbach EP (1962) Modified reagents for determination of urea and ammonia. Clin Chem 8:130–132. https://doi.org/10.1093/clinchem/8.2.130

Article  CAS  PubMed  Google Scholar 

Chang JJ, Thia C, Lin HY et al (2015) Integrating an algal β-carotene hydroxylase gene into a designed carotenoid-biosynthesis pathway increases carotenoid production in yeast. Bioresour Technol. https://doi.org/10.1016/j.biortech.2014.11.097

Article  PubMed  Google Scholar 

Chaturvedi S, Gupta AK, Bhattacharya A et al (2021) Overexpression and repression of key rate-limiting enzymes (acetyl CoA carboxylase and HMG reductase) to enhance fatty acid production from Rhodotorula mucilaginosa. J Basic Microbiol. https://doi.org/10.1002/jobm.202000407

Article  PubMed  Google Scholar 

Cifuentes AS, González MA, Vargas S et al (2003) Optimization of biomass, total carotenoids and astaxanthin production in Haematococcus pluvialis Flotow strain Steptoe (Nevada, USA) under laboratory conditions. Biol Res 36:343–357. https://doi.org/10.4067/S0716-97602003000300006

Article  CAS  PubMed  Google Scholar 

Csernetics Á, Nagy G, Iturriaga EA et al (2011) Expression of three isoprenoid biosynthesis genes and their effects on the carotenoid production of the zygomycete Mucor circinelloides. 48:696–703. https://doi.org/10.1016/j.fgb.2011.03.006

Csernetics Á, Tóth E, Farkas A et al (2014) Expression of a bacterial ß-carotene hydroxylase in canthaxanthin producing mutant Mucor circinelloides strains. Acta Biol Szeged 58:139–146. http://www2.sci.u-szeged.hu/ABS

Google Scholar 

Csernetics Á, Tóth E, Farkas A et al (2015) Expression of Xanthophyllomyces dendrorhous cytochrome-P450 hydroxylase and reductase in Mucor circinelloides. World J Microbiol Biotechnol. https://doi.org/10.1007/s11274-014-1784-z

Article  PubMed  Google Scholar 

Do TT, Ong BN, Tran MLN et al (2019) Biomass and astaxanthin productivities of Haematococcus pluvialis in an angled twin-layer porous substrate photobioreactor: Effect of inoculum density and storage time. Biology (Basel) 8. https://doi.org/10.3390/biology8030068

Fakhri S, Abbaszadeh F, Dargahi L, Jorjani M (2018) Astaxanthin: A mechanistic review on its biological activities and health benefits. Pharmacol Res. https://doi.org/10.1016/j.phrs.2018.08.012

Article  PubMed  Google Scholar 

Fazili ABA, Shah AM, Albeshr MF et al (2022a) Overexpression of the Mitochondrial Malic Enzyme Genes (malC and malD) Improved the Lipid Accumulation in Mucor circinelloides WJ11. Front Microbiol. https://doi.org/10.3389/fmicb.2022.919364

Article  PubMed  PubMed Central  Google Scholar 

Fazili ABA, Shah AM, Zan X et al (2022b) Mucor circinelloides: a model organism for oleaginous fungi and its potential applications in bioactive lipid production. Microb Cell Fact. https://doi.org/10.1186/s12934-022-01758-9

Article  PubMed  PubMed Central  Google Scholar 

Galarza JI, Gimpel JA, Rojas V et al (2018) Over-accumulation of astaxanthin in Haematococcus pluvialis through chloroplast genetic engineering. Algal Res. https://doi.org/10.1016/j.algal.2018.02.024

Article  Google Scholar 

Gao Z, Meng C, Zhang X et al (2012) Differential expression of carotenogenic genes, associated changes on Astaxanthin production and photosynthesis features induced by JA in H. pluvialis. PLoS ONE. https://doi.org/10.1371/journal.pone.0042243

Article  PubMed  PubMed Central  Google Scholar 

Gao S, Tong Y, Zhu L et al (2017) Iterative integration of multiple-copy pathway genes in Yarrowia lipolytica for heterologous β-carotene production. Metab Eng. https://doi.org/10.1016/j.ymben.2017.04.004

Article  PubMed  Google Scholar 

Garre V, Barredo JL, Iturriaga EA (2015) Transformation of Mucor circinelloides f. lusitanicus Protoplast. https://doi.org/10.1007/978-3-319-10142-2_4

Gustafsson C, Govindarajan S, Minshull J (2004) Codon bias and heterologous protein expression. Trends Biotechnol. https://doi.org/10.1016/j.tibtech.2004.04.006

Article  PubMed  Google Scholar 

Gutiérrez A, López-García S, Garre V (2011) High reliability transformation of the basal fungus Mucor circinelloides by electroporation. J Microbiol Methods 84:442–446. https://doi.org/10.1016/j.mimet.2011.01.002

Article  CAS  PubMed  Google Scholar 

Han D, Li Y, Hu Q (2013) Astaxanthin in microalgae: Pathways, functions and biotechnological implications. Algae 28:131–147. https://doi.org/10.4490/algae.2013.28.2.131

Article  CAS  Google Scholar 

Harker M, Young AJ (1995) Inhibition of astaxanthin synthesis in the green alga, Haematococcus pluvialis. Eur J Phycol. https://doi.org/10.1080/09670269500650961

Article  Google Scholar 

Iturriaga EA, Alvarez MI, Eslava AP, Papp T (2018) Expression vectors and gene fusions for the directed modification of the carotenoid biosynthesis pathway in Mucor circinelloides. In: Methods in Molecular Biology. doi.10.1007/978-1-4939-8742-9_14. PMID: 30109635

Jannel S, Caro Y, Bermudes M, Petit T (2020) Novel insights into the biotechnological production of Haematococcus pluvialis-derived astaxanthin: Advances and key challenges to allow its industrial use as novel food ingredient. J Mar Sci Eng. https://doi.org/10.3390/jmse8100789

Article  Google Scholar 

Jeong TH, Cho YS, Choi SS et al (2018) Enhanced production of astaxanthin by metabolically recombinant non-mevalonate pathway in Escherichia coli. Microbiol Biotechnol Lett. https://doi.org/10.4014/mbl.1801.01007

Article  Google Scholar 

Kathiresan S, Chandrashekar A, Ravishankar GA, Sarada R (2015) Regulation of astaxanthin and its intermediates through cloning and genetic transformation of β-carotene ketolase in Haematococcus pluvialis. J Biotechnol 196–197:33–41. https://doi.org/10.1016/j.jbiotec.2015.01.006

Article  CAS  PubMed  Google Scholar 

Kendrick A, Ratledge C (1992) Lipid formation in the oleaginous mould Entomophthora exitalis grown in continuous culture: effects of growth rate, temperature and dissolved oxygen tension on polyunsaturated fatty acids. Appl Microbiol Biotechnol. https://doi.org/10.1007/BF00174196

Article  Google Scholar 

Khan MAK, Yang J, Hussain SA et al (2019) Construction of DGLA producing cell factory by genetic modification of Mucor circinelloides. Microb Cell Fact 18. https://doi.org/10.1186/s12934-019-1110-4

Li Z, Yang H, Zheng C et al (2022) Effectively Improve the Astaxanthin Production by Combined Additives Regulating Different Metabolic Nodes in Phaffia rhodozyma. Front Bioeng Biotechnol. https://doi.org/10.3389/fbioe.2021.812309

Masojídek J, Torzillo G (2008) Mass Cultivation of Freshwater Microalgae. In: Encyclopedia of Ecology, Five-Volume Set. https://doi.org/10.1016/B978-008045405-4.00830-2

Miao L, Chi S, Wu M et al (2019) Deregulation of phytoene-β-carotene synthase results in derepression of astaxanthin synthesis at high glucose concentration in Phaffia rhodozyma astaxanthin-overproducing strain MK19. BMC Microbiol. https://doi.org/10.1186/s12866-019-1507-6

Article  PubMed  PubMed Central  Google Scholar 

Naguib YMA (2000) Antioxidant activities of astaxanthin and related carotenoids. J Agric Food Chem 48:1150–1154. https://doi.org/10.1021/jf991106k

Article  CAS  PubMed  Google Scholar 

Nagy G, Farkas A, Csernetics Á et al (2014) Transcription of the three HMG-CoA reductase genes of Mucor circinelloides. BMC Microbiol 14:93. https://doi.org/10.1186/1471-2180-14-93

Article  CAS  PubMed  PubMed Central  Google Scholar 

Navarro E, Sandmann G, Torres-Martínez S (1995) Mutants of the Carotenoid Biosynthetic Pathway of Mucor circinelloides. Exp Mycol. https://doi.org/10.1006/emyc.1995.1023

Article  Google Scholar 

Navarro E, Lorca-Pascual J, Quiles-Rosillo M et al (2001) A negative regulator of light-inducible carotenogenesis in Mucor circinelloides. Mol Genet Genomics 266:463–470. https://doi.org/10.1007/s004380100558

Article  CAS  PubMed  Google Scholar 

Naz T, Nazir Y, Nosheen S et al (2020a) Redirecting Metabolic Flux towards the Mevalonate Pathway for Enhanced β-Carotene Production in M. circinelloides CBS 277.49. Biomed Res Int. https://doi.org/10.1155/2020/8890269

Article  PubMed  PubMed Central 

Comments (0)

No login
gif