Chandola V, Banerjee A, Kumar V. Anomaly detection: a survey. ACM Comput Surv (CSUR). 2009;41(3):1–58.
Estiri H, Klann JG, Murphy SN. A clustering approach for detecting implausible observation values in electronic health records data. BMC Med Inform Decis Mak. 2019;19:1–16.
Presbitero A, Quax R, Krzhizhanovskaya V, Sloot P. Anomaly detection in clinical data of patients undergoing heart surgery. Procedia Comput Sci. 2017;108:99–108.
Ray S, McEvoy DS, Aaron S, Hickman T-T, Wright A. Using statistical anomaly detection models to find clinical decision support malfunctions. J Am Med Inform Assoc. 2018;25(7):862–71.
Article PubMed PubMed Central Google Scholar
Buyse M, George SL, Evans S, Geller NL, Ranstam J, Scherrer B, Lesaffre E, Murray G, Edler L, Hutton J, et al. The role of biostatistics in the prevention, detection and treatment of fraud in clinical trials. Stat Med. 1999;18(24):3435–51.
Article PubMed CAS Google Scholar
George SL, Buyse M. Data fraud in clinical trials. Clin Invest. 2015;5(2):161.
Xu J, Huang L, Yao Z, Xu Z, Zalkikar J, Tiwari R. Statistical methods for clinical study site selection. Ther Innov Regul Sci. 2020;54:211–9.
de Viron S, Trotta L, Schumacher H, Lomp H-J, Höppner S, Young S, Buyse M. Detection of fraud in a clinical trial using unsupervised statistical monitoring. Ther Innov Regul Sci. 2022;56:130–6.
Huang L, Zalkikar J, Tiwari RC. A likelihood ratio test based method for signal detection with application to FDA’s drug safety data. J Am Stat Assoc. 2011;106(496):1230–41.
Dupuch M, Engström C, Silvestrov S, Hamon T, Grabar N. Comparison of clustering approaches through their application to pharmacovigilance terms. In: Artificial intelligence in medicine: 14th conference on artificial intelligence in medicine, AIME 2013, Murcia, Spain, May 29–June 1, 2013. Proceedings 14. Springer; 2013. pp. 58–67.
Askar A, Zuefle A. Clustering of adverse events of post-market approved drugs. In: Proceedings of the 17th international symposium on spatial and temporal databases; 2021. pp. 106–115.
Norén GN, Meldau E-L, Chandler RE. Consensus clustering for case series identification and adverse event profiles in pharmacovigilance. Artif Intell Med. 2021;122:102199.
Destere A, Marchello G, Merino D, Othman NB, Gérard AO, Lavrut T, Viard D, Rocher F, Corneli M, Bouveyron C, Drici, MD. An artificial intelligence algorithm for co-clustering to help in pharmacovigilance before and during the covid-19 pandemic. Br J Clin Pharmacol 2024.
Xu R, Wunsch DC. Clustering algorithms in biomedical research: a review. IEEE Rev Biomed Eng. 2010;3:120–54.
Chaira T. A novel intuitionistic fuzzy c means clustering algorithm and its application to medical images. Appl Soft Comput. 2011;11(2):1711–7.
Jones PJ, James MK, Davies MJ, Khunti K, Catt M, Yates T, Rowlands AV, Mirkes EM. Filterk: a new outlier detection method for k-means clustering of physical activity. J Biomed Inform. 2020;104:103397.
Omran MG, Engelbrecht AP, Salman A. An overview of clustering methods. Intell Data Anal. 2007;11(6):583–605.
Murphy KP. Machine learning: a probabilistic perspective. MIT Press; 2012.
James G, Witten D, Hastie T, Tibshirani R, et al. An introduction to statistical learning. Springer; 2013. p. 112.
Chen B, Tai PC, Harrison R, Pan Y. Novel hybrid hierarchical-k-means clustering method (hk-means) for microarray analysis. In: 2005 IEEE computational systems bioinformatics conference-workshops (CSBW’05). IEEE; 2005, pp. 105–108.
Von Luxburg U. A tutorial on spectral clustering. Stat Comput. 2007;17:395–416.
Nascimento MC, De Carvalho AC. Spectral methods for graph clustering—a survey. Eur J Oper Res. 2011;211(2):221–31.
Hastie T, Tibshirani R, Friedman JH. The elements of statistical learning: data mining, inference, and prediction. Springer; 2009. p. 2.
Liu FT, Ting KM, Zhou Z-H. Isolation forest. In: 2008 8th IEEE international conference on data mining. IEEE; 2008. pp. 413–422.
Liu FT, Ting KM, Zhou Z-H. Isolation-based anomaly detection. ACM Trans Knowl Discov Data (TKDD). 2012;6(1):1–39.
Hariri S, Kind MC, Brunner RJ. Extended isolation forest. IEEE Trans Knowl Data Eng. 2019;33(4):1479–89.
Xu D, Tian Y. A comprehensive survey of clustering algorithms. Ann Data Sci. 2015;2:165–93.
Sinisi SE, Polley EC, Petersen ML, Rhee SY, Van Der Laan MJ. Super learning: an application to the prediction of HIV-1 drug resistance. Stat Appl Genet Mol Biol 2007;6(1).
Van der Laan MJ, Polley EC, Hubbard AE. Super learner. Stat Appl Genet Mol Biol 2007;6(1).
Wang K, Wang B, Peng L. Cvap: validation for cluster analyses. Data Sci J. 2009;8:88–93.
Liu Y, Li Z, Xiong H, Gao X, Wu J. Understanding of internal clustering validation measures. In: 2010 IEEE international conference on data mining. IEEE; 2010. pp. 911–916.
Desgraupes B. Clustering indices. Univer Paris Ouest-Lab Modal’X. 2013;1(1):34.
Morey LC, Agresti A. The measurement of classification agreement: an adjustment to the rand statistic for chance agreement. Educ Psychol Measur. 1984;44(1):33–7.
Perucca P, Gilliam FG. Adverse effects of antiepileptic drugs. Lancet Neurol. 2012;11(9):792–802.
Article PubMed CAS Google Scholar
Tsvere M, Chiweshe MK, Mutanana N. General side effects and challenges associated with anti-epilepsy medication: a review of related literature. Afr J Prim Health Care Fam Med. 2020;12(1):1–5.
Cramer JA, Mintzer S, Wheless J, Mattson RH. Adverse effects of antiepileptic drugs: a brief overview of important issues. Expert Rev Neurother. 2010;10(6):885–91.
Article PubMed CAS Google Scholar
Jahromi SR, Togha M, Fesharaki SH, Najafi M, Moghadam NB, Kheradmand JA, Kazemi H, Gorji A. Gastrointestinal adverse effects of antiepileptic drugs in intractable epileptic patients. Seizure. 2011;20(4):343–6.
Bozcal E, Dagdeviren M. Toxicity of \(\beta\)-lactam antibiotics: pathophysiology, molecular biology and possible recovery strategies. In: Poisoning: from specific toxic agents to novel rapid and simplified techniques for analysis. InTechOpen: Rijeka, Croatia; 2017. pp. 87–105.
Cunha BA. Antibiotic side effects. Med Clin North Am. 2001;85(1):149–85.
Article PubMed CAS Google Scholar
Lagacé-Wiens P, Rubinstein E. Adverse reactions to \(\beta\)-lactam antimicrobials. Expert Opin Drug Saf. 2012;11(3):381–99.
Platt R. Adverse effects of third-generation cephalosporins. J Antimicrob Chemother 1982;10:135–140. no. suppl_C.
Miller EL. The penicillins: a review and update. J Midwifery Women’s Health. 2002;47(6):426–34.
Grill MF, Maganti RK. Neurotoxic effects associated with antibiotic use: management considerations. Br J Clin Pharmacol. 2011;72(3):381–93.
Article PubMed PubMed Central CAS Google Scholar
Bui T, Patel P, Preuss CV. Cephalosporins. StatPearls Publishing; 2024. https://www.ncbi.nlm.nih.gov/books/NBK551517/.
Murphy M, Metcalfe P, Grint P, Green A, Knowles S, Amess J, Waters A. Cephalosporin-induced immune neutropenia. Br J Haematol. 1985;59(1):9–14.
Article PubMed CAS Google Scholar
Chowdhury T, Karki S, Rajeev PA, Sajeev AT, Aryal B, Bellamkonda A, Basnet P, Panigrahi K. Unmasking the silent threat: cefepime-induced thrombocytopenia. Cureus. 2023;15(10).
Comments (0)