A Clustering Ensemble Method for Drug Safety Signal Detection in Post-Marketing Surveillance

Chandola V, Banerjee A, Kumar V. Anomaly detection: a survey. ACM Comput Surv (CSUR). 2009;41(3):1–58.

Article  Google Scholar 

Estiri H, Klann JG, Murphy SN. A clustering approach for detecting implausible observation values in electronic health records data. BMC Med Inform Decis Mak. 2019;19:1–16.

Article  Google Scholar 

Presbitero A, Quax R, Krzhizhanovskaya V, Sloot P. Anomaly detection in clinical data of patients undergoing heart surgery. Procedia Comput Sci. 2017;108:99–108.

Article  Google Scholar 

Ray S, McEvoy DS, Aaron S, Hickman T-T, Wright A. Using statistical anomaly detection models to find clinical decision support malfunctions. J Am Med Inform Assoc. 2018;25(7):862–71.

Article  PubMed  PubMed Central  Google Scholar 

Buyse M, George SL, Evans S, Geller NL, Ranstam J, Scherrer B, Lesaffre E, Murray G, Edler L, Hutton J, et al. The role of biostatistics in the prevention, detection and treatment of fraud in clinical trials. Stat Med. 1999;18(24):3435–51.

Article  PubMed  CAS  Google Scholar 

George SL, Buyse M. Data fraud in clinical trials. Clin Invest. 2015;5(2):161.

Article  CAS  Google Scholar 

Xu J, Huang L, Yao Z, Xu Z, Zalkikar J, Tiwari R. Statistical methods for clinical study site selection. Ther Innov Regul Sci. 2020;54:211–9.

Article  PubMed  Google Scholar 

de Viron S, Trotta L, Schumacher H, Lomp H-J, Höppner S, Young S, Buyse M. Detection of fraud in a clinical trial using unsupervised statistical monitoring. Ther Innov Regul Sci. 2022;56:130–6.

Article  PubMed  Google Scholar 

Huang L, Zalkikar J, Tiwari RC. A likelihood ratio test based method for signal detection with application to FDA’s drug safety data. J Am Stat Assoc. 2011;106(496):1230–41.

Article  CAS  Google Scholar 

Dupuch M, Engström C, Silvestrov S, Hamon T, Grabar N. Comparison of clustering approaches through their application to pharmacovigilance terms. In: Artificial intelligence in medicine: 14th conference on artificial intelligence in medicine, AIME 2013, Murcia, Spain, May 29–June 1, 2013. Proceedings 14. Springer; 2013. pp. 58–67.

Askar A, Zuefle A. Clustering of adverse events of post-market approved drugs. In: Proceedings of the 17th international symposium on spatial and temporal databases; 2021. pp. 106–115.

Norén GN, Meldau E-L, Chandler RE. Consensus clustering for case series identification and adverse event profiles in pharmacovigilance. Artif Intell Med. 2021;122:102199.

Article  PubMed  Google Scholar 

Destere A, Marchello G, Merino D, Othman NB, Gérard AO, Lavrut T, Viard D, Rocher F, Corneli M, Bouveyron C, Drici, MD. An artificial intelligence algorithm for co-clustering to help in pharmacovigilance before and during the covid-19 pandemic. Br J Clin Pharmacol 2024.

Xu R, Wunsch DC. Clustering algorithms in biomedical research: a review. IEEE Rev Biomed Eng. 2010;3:120–54.

Article  PubMed  Google Scholar 

Chaira T. A novel intuitionistic fuzzy c means clustering algorithm and its application to medical images. Appl Soft Comput. 2011;11(2):1711–7.

Article  Google Scholar 

Jones PJ, James MK, Davies MJ, Khunti K, Catt M, Yates T, Rowlands AV, Mirkes EM. Filterk: a new outlier detection method for k-means clustering of physical activity. J Biomed Inform. 2020;104:103397.

Article  PubMed  Google Scholar 

Omran MG, Engelbrecht AP, Salman A. An overview of clustering methods. Intell Data Anal. 2007;11(6):583–605.

Article  Google Scholar 

Murphy KP. Machine learning: a probabilistic perspective. MIT Press; 2012.

James G, Witten D, Hastie T, Tibshirani R, et al. An introduction to statistical learning. Springer; 2013. p. 112.

Chen B, Tai PC, Harrison R, Pan Y. Novel hybrid hierarchical-k-means clustering method (hk-means) for microarray analysis. In: 2005 IEEE computational systems bioinformatics conference-workshops (CSBW’05). IEEE; 2005, pp. 105–108.

Von Luxburg U. A tutorial on spectral clustering. Stat Comput. 2007;17:395–416.

Article  Google Scholar 

Nascimento MC, De Carvalho AC. Spectral methods for graph clustering—a survey. Eur J Oper Res. 2011;211(2):221–31.

Article  Google Scholar 

Hastie T, Tibshirani R, Friedman JH. The elements of statistical learning: data mining, inference, and prediction. Springer; 2009. p. 2.

Liu FT, Ting KM, Zhou Z-H. Isolation forest. In: 2008 8th IEEE international conference on data mining. IEEE; 2008. pp. 413–422.

Liu FT, Ting KM, Zhou Z-H. Isolation-based anomaly detection. ACM Trans Knowl Discov Data (TKDD). 2012;6(1):1–39.

Article  Google Scholar 

Hariri S, Kind MC, Brunner RJ. Extended isolation forest. IEEE Trans Knowl Data Eng. 2019;33(4):1479–89.

Article  Google Scholar 

Xu D, Tian Y. A comprehensive survey of clustering algorithms. Ann Data Sci. 2015;2:165–93.

Article  Google Scholar 

Sinisi SE, Polley EC, Petersen ML, Rhee SY, Van Der Laan MJ. Super learning: an application to the prediction of HIV-1 drug resistance. Stat Appl Genet Mol Biol 2007;6(1).

Van der Laan MJ, Polley EC, Hubbard AE. Super learner. Stat Appl Genet Mol Biol 2007;6(1).

Wang K, Wang B, Peng L. Cvap: validation for cluster analyses. Data Sci J. 2009;8:88–93.

Article  Google Scholar 

Liu Y, Li Z, Xiong H, Gao X, Wu J. Understanding of internal clustering validation measures. In: 2010 IEEE international conference on data mining. IEEE; 2010. pp. 911–916.

Desgraupes B. Clustering indices. Univer Paris Ouest-Lab Modal’X. 2013;1(1):34.

Google Scholar 

Morey LC, Agresti A. The measurement of classification agreement: an adjustment to the rand statistic for chance agreement. Educ Psychol Measur. 1984;44(1):33–7.

Article  Google Scholar 

Perucca P, Gilliam FG. Adverse effects of antiepileptic drugs. Lancet Neurol. 2012;11(9):792–802.

Article  PubMed  CAS  Google Scholar 

Tsvere M, Chiweshe MK, Mutanana N. General side effects and challenges associated with anti-epilepsy medication: a review of related literature. Afr J Prim Health Care Fam Med. 2020;12(1):1–5.

Google Scholar 

Cramer JA, Mintzer S, Wheless J, Mattson RH. Adverse effects of antiepileptic drugs: a brief overview of important issues. Expert Rev Neurother. 2010;10(6):885–91.

Article  PubMed  CAS  Google Scholar 

Jahromi SR, Togha M, Fesharaki SH, Najafi M, Moghadam NB, Kheradmand JA, Kazemi H, Gorji A. Gastrointestinal adverse effects of antiepileptic drugs in intractable epileptic patients. Seizure. 2011;20(4):343–6.

Article  PubMed  Google Scholar 

Bozcal E, Dagdeviren M. Toxicity of \(\beta\)-lactam antibiotics: pathophysiology, molecular biology and possible recovery strategies. In: Poisoning: from specific toxic agents to novel rapid and simplified techniques for analysis. InTechOpen: Rijeka, Croatia; 2017. pp. 87–105.

Cunha BA. Antibiotic side effects. Med Clin North Am. 2001;85(1):149–85.

Article  PubMed  CAS  Google Scholar 

Lagacé-Wiens P, Rubinstein E. Adverse reactions to \(\beta\)-lactam antimicrobials. Expert Opin Drug Saf. 2012;11(3):381–99.

Article  PubMed  Google Scholar 

Platt R. Adverse effects of third-generation cephalosporins. J Antimicrob Chemother 1982;10:135–140. no. suppl_C.

Miller EL. The penicillins: a review and update. J Midwifery Women’s Health. 2002;47(6):426–34.

Article  Google Scholar 

Grill MF, Maganti RK. Neurotoxic effects associated with antibiotic use: management considerations. Br J Clin Pharmacol. 2011;72(3):381–93.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Bui T, Patel P, Preuss CV. Cephalosporins. StatPearls Publishing; 2024. https://www.ncbi.nlm.nih.gov/books/NBK551517/.

Murphy M, Metcalfe P, Grint P, Green A, Knowles S, Amess J, Waters A. Cephalosporin-induced immune neutropenia. Br J Haematol. 1985;59(1):9–14.

Article  PubMed  CAS  Google Scholar 

Chowdhury T, Karki S, Rajeev PA, Sajeev AT, Aryal B, Bellamkonda A, Basnet P, Panigrahi K. Unmasking the silent threat: cefepime-induced thrombocytopenia. Cureus. 2023;15(10).

Comments (0)

No login
gif