Promotion of nerve regeneration and motor function recovery in SCI rats using LOCAS-iPSCs-NSCs

Ahuja CS, Wilson JR, Nori S, Kotter MRN, Druschel C, Curt A, Fehlings MG. Traumatic spinal cord injury. Nat Rev Dis Primers. 2017;3:17018.

Article  PubMed  Google Scholar 

Fan C, Li X, Xiao Z, Zhao Y, Liang H, Wang B, Han S, Li X, Xu B, Wang N, Liu S, Xue W, Dai J. A modified collagen scaffold facilitates endogenous neurogenesis for acute spinal cord injury repair. Acta Biomater. 2017;51:304–16.

Article  CAS  PubMed  Google Scholar 

Liu W, Xu B, Xue W, Yang B, Fan Y, Chen B, Xiao Z, Xue X, Sun Z, Shu M, Zhang Q, Shi Y, Zhao Y, Dai J. A functional scaffold to promote the migration and neuronal differentiation of neural stem/progenitor cells for spinal cord injury repair. Biomaterials. 2020;243: 119941.

Article  CAS  PubMed  Google Scholar 

Tang F, Tang J, Zhao Y, Zhang J, Xiao Z, Chen B, Han G, Yin N, Jiang X, Zhao C, Cheng S, Wang Z, Chen Y, Chen Q, Song K, Zhang Z, Niu J, Wang L, Shi Q, Chen L, Yang H, Hou S, Zhang S, Dai J. Long-term clinical observation of patients with acute and chronic complete spinal cord injury after transplantation of NeuroRegen scaffold. Sci China Life Sci. 2022;65:909–26.

Article  CAS  PubMed  Google Scholar 

Tanaka Y, Baba K, Duncan TJ, Kubota A, Asahi T, Quantock AJ, Yamato M, Okano T, Nishida K. Transparent, tough collagen laminates prepared by oriented flow casting, multi-cyclic vitrification and chemical cross-linking. Biomaterials. 2011;32:3358–66.

Article  CAS  PubMed  Google Scholar 

Liu Y, Lv H, Ren L, Xue G, Wang Y. Improving the moisturizing properties of collagen film by surface grafting of chondroitin sulfate for corneal tissue engineering. J Biomater Sci Polym Ed. 2016;27:758–72.

Article  CAS  PubMed  Google Scholar 

Chen C, Zhao ML, Zhang RK, Lu G, Zhao CY, Fu F, Sun HT, Zhang S, Tu Y, Li XH. Collagen/heparin sulfate scaffolds fabricated by a 3D bioprinter improved mechanical properties and neurological function after spinal cord injury in rats. J Biomed Mater Res A. 2017;105:1324–32.

Article  CAS  PubMed  Google Scholar 

Chen X, Zhou L, Xu H, Yamamoto M, Shinoda M, Tada I, Minami S, Urayama K, Yamane H. The structure and properties of natural sheep casing and artificial films prepared from natural collagen with various crosslinking treatments. Int J Biol Macromol. 2019;135:959–68.

Article  CAS  PubMed  Google Scholar 

He X, Li W, Liu S, Li Y, Chen Y, Dan N, Dan W, Zhu M. Fabrication of high-strength, flexible, porous collagen-based scaffolds to promote tissue regeneration. Mater Today Bio. 2022;16: 100376.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang J, Wang RJ, Chen M, Liu XY, Ma K, Xu HY, Deng WS, Ye YC, Li WX, Chen XY, Sun HT. Collagen/heparan sulfate porous scaffolds loaded with neural stem cells improve neurological function in a rat model of traumatic brain injury. Neural Regen Res. 2021;16:1068–77.

Article  CAS  PubMed  Google Scholar 

Jiang J, Liu X, Chen H, Dai C, Niu X, Dai L, Chen X, Zhang S. 3D printing collagen/heparin sulfate scaffolds boost neural network reconstruction and motor function recovery after traumatic brain injury in canine. Biomater Sci. 2020;8:6362–74.

Article  CAS  PubMed  Google Scholar 

Assinck P, Duncan GJ, Hilton BJ, Plemel JR, Tetzlaff W. Cell transplantation therapy for spinal cord injury. Nat Neurosci. 2017;20:637–47.

Article  CAS  PubMed  Google Scholar 

Curtis E, Martin JR, Gabel B, Sidhu N, Rzesiewicz TK, Mandeville R, Van Gorp S, Leerink M, Tadokoro T, Marsala S, Jamieson C, Marsala M, Ciacci JD, First-in-Human A. Phase I study of neural stem cell transplantation for chronic spinal cord injury. Cell Stem Cell. 2018;22:941–50.

Article  CAS  PubMed  Google Scholar 

Okita K, Matsumura Y, Sato Y, Okada A, Morizane A, Okamoto S, Hong H, Nakagawa M, Tanabe K, Tezuka K, Shibata T, Kunisada T, Takahashi M, Takahashi J, Saji H, Yamanaka S. A more efficient method to generate integration-free human iPS cells. Nat Methods. 2011;8:409–12.

Article  CAS  PubMed  Google Scholar 

Gao L, Peng Y, Xu W, He P, Li T, Lu X, Chen G. Progress in stem cell therapy for spinal cord injury. Stem Cells Int. 2020;2020:2853650.

Article  PubMed  PubMed Central  Google Scholar 

Okita K, Yamakawa T, Matsumura Y, Sato Y, Amano N, Watanabe A, Goshima N, Yamanaka S. An efficient nonviral method to generate integration-free human-induced pluripotent stem cells from cord blood and peripheral blood cells. Stem Cells. 2013;31:458–66.

Article  CAS  PubMed  Google Scholar 

Scaradavou A. Cord blood beyond transplantation: Can we use the experience to advance all cell therapies? Br J Haematol. 2021;194:14–27.

Article  PubMed  Google Scholar 

Liu X, Dan N, Dan W. Preparation and characterization of an advanced collagen aggregate from porcine acellular dermal matrix. Int J Biol Macromol. 2016;88:179–88.

Article  CAS  PubMed  Google Scholar 

Fan R, Hao Y, Du Q, Kang J, Xu M, Li Y. Beneficial effects of walnut oligopeptides on muscle loss in senescence-accelerated mouse prone-8 (SAMP8) mice: focusing on mitochondrial function. Nutrients. 2022;14:2051.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jalan D, Saini N, Zaidi M, Pallottie A, Elkabes S, Heary RF. Effects of early surgical decompression on functional and histological outcomes after severe experimental thoracic spinal cord injury. J Neurosurg Spine. 2017;26:62–75.

Article  PubMed  Google Scholar 

Neumann M, Wang Y, Kim S, Hong SM, Jeng L, Bilgen M, Liu J. Assessing gait impairment following experimental traumatic brain injury in mice. J Neurosci Methods. 2009;176:34–44.

Article  PubMed  Google Scholar 

Siddique HR, Feldman DE, Chen CL, Punj V, Tokumitsu H, Machida K. NUMB phosphorylation destabilizes p53 and promotes self-renewal of tumor-initiating cells by a NANOG-dependent mechanism in liver cancer. Hepatology. 2015;62:1466–79.

Article  CAS  PubMed  Google Scholar 

Guo Z, Sun C, Yang H, Gao H, Liang N, Wang J, Hu S, Ren N, Pang J, Wang J, Meng N, Han L, Liu H. Regulation of neural differentiation of ADMSCs using graphene-mediated wireless-localized electrical signals driven by electromagnetic induction. Adv Sci (Weinh). 2022;9: e2104424.

Article  PubMed  Google Scholar 

Karsy M, Hawryluk G. Modern medical management of spinal cord injury. Curr Neurol Neurosci Rep. 2019;19:65.

Article  PubMed  Google Scholar 

Slotkin JR, Pritchard CD, Luque B, Ye J, Layer RT, Lawrence MS, O’Shea TM, Roy RR, Zhong H, Vollenweider I, Edgerton VR, Courtine G, Woodard EJ, Langer R. Biodegradable scaffolds promote tissue remodeling and functional improvement in non-human primates with acute spinal cord injury. Biomaterials. 2017;123:63–76.

Article  CAS  PubMed  Google Scholar 

Lee JH, Kim KH, Kwon OH, Kwon OK, Uyama H, Kim Y-J. Photodynamic activity of protoporphyrin IX-immobilized cellulose monolith for nerve tissue regeneration. Int J Mol Sci. 2022;23:1035.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Swanson WB, Omi M, Zhang Z, Nam HK, Jung Y, Wang G, Ma PX, Hatch NE, Mishina Y. Macropore design of tissue engineering scaffolds regulates mesenchymal stem cell differentiation fate. Biomaterials. 2021;272: 120769.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bradbury EJ, McMahon SB. Spinal cord repair strategies: Why do they work? Nat Rev Neurosci. 2006;7:644–53.

Article  CAS  PubMed  Google Scholar 

Thuret S, Moon LD, Gage FH. Therapeutic interventions after spinal cord injury. Nat Rev Neurosci. 2006;7:628–43.

Article  CAS  PubMed  Google Scholar 

Csobonyeiova M, Polak S, Zamborsky R, Danisovic L. Recent progress in the regeneration of spinal cord injuries by induced pluripotent stem cells. Int J Mol Sci. 2019;20:3838.

Comments (0)

No login
gif