Gross G, Waks T, Eshhar Z. Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity. Proc Natl Acad Sci U S A. 1989;86:10024–8.
Article CAS PubMed PubMed Central Google Scholar
Eshhar Z, Waks T, Gross G, Schindler DG. Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the gamma or zeta subunits of the immunoglobulin and T-cell receptors. Proc Natl Acad Sci U S A. 1993;90:720–4. https://doi.org/10.1073/pnas.90.2.720.
Article CAS PubMed PubMed Central Google Scholar
June CH, Sadelain M. Chimeric antigen receptor therapy. N Engl J Med. 2018;379:64–73. https://doi.org/10.1056/NEJMra1706169.
Article CAS PubMed PubMed Central Google Scholar
Brocker T, Karjalainen K. Signals through T cell receptor-zeta chain alone are insufficient to prime resting T lymphocytes. J Exp Med. 1995;181:1653–9. https://doi.org/10.1084/jem.181.5.1653.
Article CAS PubMed Google Scholar
Newick K, O’Brien S, Moon E, Albelda SM. CAR T cell therapy for solid tumors. Annu Rev Med. 2017;68:139–52. https://doi.org/10.1146/annurev-med-062315-120245.
Article CAS PubMed Google Scholar
Maude SL, Teachey DT, Porter DL, Grupp SA. CD19-targeted chimeric antigen receptor T-cell therapy for acute lymphoblastic leukemia. Blood. 2015;125:4017–23. https://doi.org/10.1182/blood-2014-12-580068.
Article CAS PubMed PubMed Central Google Scholar
Lee DW, Kochenderfer JN, Stetler-Stevenson M, et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet. 2015;385:517–28. https://doi.org/10.1016/S0140-6736(14)61403-3.
Article CAS PubMed Google Scholar
Sterner RC, Sterner RM. CAR-T cell therapy: current limitations and potential strategies. Blood Cancer J. 2021;11:69. https://doi.org/10.1038/s41408-021-00459-7.
Article PubMed PubMed Central Google Scholar
Khan AN, Asija S, Pendhari J, Purwar R. CAR-T cell therapy in hematological malignancies: where are we now and where are we heading for? Eur J Haematol. 2024;112:6–18. https://doi.org/10.1111/ejh.14076.
Article CAS PubMed Google Scholar
Majzner RG, Mackall CL. Clinical lessons learned from the first leg of the CAR T cell journey. Nat Med. 2019;25:1341–55. https://doi.org/10.1038/s41591-019-0564-6.
Article CAS PubMed Google Scholar
Ramakrishna S, Barsan V, Mackall C. Prospects and challenges for use of CAR T cell therapies in solid tumors. Expert Opin Biol Ther. 2020;20:503–16. https://doi.org/10.1080/14712598.2020.1738378.
Article CAS PubMed Google Scholar
Marofi F, Motavalli R, Safonov VA, et al. CAR T cells in solid tumors: challenges and opportunities. Stem Cell Res Ther. 2021;12:81. https://doi.org/10.1186/s13287-020-02128-1.
Article CAS PubMed PubMed Central Google Scholar
Del Bufalo F, De Angelis B, Caruana I, et al. GD2-CART01 for relapsed or refractory high-risk neuroblastoma. N Engl J Med. 2023;388:1284–95. https://doi.org/10.1056/NEJMoa2210859.
Qi C, Gong J, Li J, et al. Claudin18.2-specific CAR T cells in gastrointestinal cancers: phase 1 trial interim results. Nat Med. 2022;28:1189–98. https://doi.org/10.1038/s41591-022-01800-8.
Article CAS PubMed PubMed Central Google Scholar
Qi C, Liu C, Gong J, et al. Claudin18.2-targeted chimeric antigen receptor T cell-therapy for patients with gastrointestinal cancers: final results of CT041-CG4006 phase 1 trial. J Clin Oncol. 2024;42:2501. https://doi.org/10.1200/JCO.2024.42.16_suppl.2501.
Qi C, Liu C, Gong J, et al. Claudin18.2-specific CAR T cells in gastrointestinal cancers: phase 1 trial final results. Nat Med. 2024. https://doi.org/10.1038/s41591-024-03037-z.
Article PubMed PubMed Central Google Scholar
Maris JM. Recent advances in neuroblastoma. N Engl J Med. 2021;362:2202–11. https://doi.org/10.1056/NEJMra0804577.
Richards RM, Sotillo E, Majzner RG. CAR T cell therapy for neuroblastoma. Front Immunol. 2018. https://doi.org/10.3389/fimmu.2018.02380.
Article PubMed PubMed Central Google Scholar
Ladenstein R, Pötschger U, Valteau-Couanet D, et al. Interleukin 2 with anti-GD2 antibody ch14.18/CHO (dinutuximab beta) in patients with high-risk neuroblastoma (HR-NBL1/SIOPEN): a multicentre, randomised, phase 3 trial. Lancet Oncol. 2018;19:1617–29. https://doi.org/10.1016/S1470-2045(18)30578-3.
Article CAS PubMed Google Scholar
Theruvath J, Menard M, Smith BAH, et al. Anti-GD2 synergizes with CD47 blockade to mediate tumor eradication. Nat Med. 2022;28:333–44. https://doi.org/10.1038/s41591-021-01625-x.
Article CAS PubMed PubMed Central Google Scholar
Pule MA, Savoldo B, Myers GD, et al. Virus-specific T cells engineered to coexpress tumor-specific receptors: persistence and antitumor activity in individuals with neuroblastoma. Nat Med. 2008;14:1264–70. https://doi.org/10.1038/nm.1882.
Article CAS PubMed PubMed Central Google Scholar
Louis CU, Savoldo B, Dotti G, et al. Antitumor activity and long-term fate of chimeric antigen receptor-positive T cells in patients with neuroblastoma. Blood. 2011;118:6050–6. https://doi.org/10.1182/blood-2011-05-354449.
Article CAS PubMed PubMed Central Google Scholar
Heczey A, Louis CU, Savoldo B, et al. CAR T cells administered in combination with lymphodepletion and PD-1inhibition to patients with neuroblastoma. Mol Ther. 2017;25:2214–24. https://doi.org/10.1016/j.ymthe.2017.05.012.
Article CAS PubMed PubMed Central Google Scholar
Straathof K, Flutter B, Wallace R, et al. Antitumor activity without on-target off-tumor toxicity of GD2-chimeric antigen receptor T cells in patients with neuroblastoma. Sci Transl Med. 2020;12:eabd6169. https://doi.org/10.1126/scitranslmed.abd6169.
Article CAS PubMed Google Scholar
Thomas S, Straathof K, Himoudi N, et al. An optimized GD2-targeting retroviral cassette for more potent and safer cellular therapy of neuroblastoma and other cancers. PLoS ONE. 2016;11: e0152196. https://doi.org/10.1371/journal.pone.0152196.
Article CAS PubMed PubMed Central Google Scholar
Quintarelli C, Orlando D, Boffa I, et al. Choice of costimulatory domains and of cytokines determines CAR T-cell activity in neuroblastoma. Oncoimmunology. 2018;7: e1433518. https://doi.org/10.1080/2162402X.2018.1433518.
Article PubMed PubMed Central Google Scholar
Straathof KC, Pulè MA, Yotnda P, et al. An inducible caspase 9 safety switch for T-cell therapy. Blood. 2005;105:4247–54. https://doi.org/10.1182/blood-2004-11-4564.
Article CAS PubMed PubMed Central Google Scholar
Tumino N, Fiore PF, Pelosi A, et al. Myeloid derived suppressor cells in tumor microenvironment: interaction with innate lymphoid cells. Semin Immunol. 2022;61–64: 101668.
Comments (0)