Increasing the Stability of Pellets Containing Lycopene by Using Dual-Coating

Li Z, Yu F. Recent advances in Lycopene for Food Preservation and Shelf-Life Extension. Foods. 2023;12(16):3121.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Puah B-P, Jalil J, Attiq A, Kamisah Y. New insights into molecular mechanism behind anti-cancer activities of Lycopene. Molecules. 2021;26(13):3888.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Landrier J-F, Breniere T, Sani L, Desmarchelier C, Mounien L, Borel P. Effect of tomato, tomato-derived products and lycopene on metabolic inflammation: from epidemiological data to molecular mechanisms. Nutr Res Rev (2023) 1–43.

Wertz K, Siler U, Goralczyk R. Lycopene: modes of action to promote prostate health. Arch Biochem Biophys. 2004;430(1):127–34.

Article  CAS  PubMed  Google Scholar 

Kerna N, A Global Health Preventive Medicine Overture. Lycopene as an Anticancer and Carcinopreventive Agent in the deterrence of Cervical Cancer. SM Prev Med Public Health 2 (2018).

Story EN, Kopec RE, Schwartz SJ, Harris GK. An update on the health effects of tomato lycopene. Annual Rev food Sci Technol. 2010;1:189–210.

Article  CAS  Google Scholar 

Heber D, Lu Q-Y. Overview of mechanisms of action of lycopene. Experimental Biology Med. 2002;227(10):920–3.

Article  CAS  Google Scholar 

Ozkan G, Günal-Köroğlu D, Karadag A, Capanoglu E, Cardoso SM, Al-Omari B, Calina D, Sharifi-Rad J, Cho WC. A mechanistic updated overview on lycopene as potential anticancer agent. Biomed Pharmacother. 2023;161:114428.

Article  CAS  PubMed  Google Scholar 

Kapała A, Szlendak M, Motacka E. The anti-cancer activity of lycopene: a systematic review of human and animal studies. Nutrients. 2022;14(23):5152.

Article  PubMed  PubMed Central  Google Scholar 

Fujita K, Nonomura N. Role of androgen receptor in prostate cancer: a review. World J men’s Health. 2019;37(3):288–95.

Article  Google Scholar 

Singh P, Goyal G. Dietary lycopene: its properties and anticarcinogenic effects. Compr Rev Food Sci Food Saf. 2008;7(3):255–70.

Article  CAS  PubMed  Google Scholar 

Li Y, Cui Z, Hu L. Recent technological strategies for enhancing the stability of lycopene in processing and production. Food Chem. 2023;405:134799.

Article  CAS  PubMed  Google Scholar 

Shi J, Maguer ML. Lycopene in tomatoes: chemical and physical properties affected by food processing. Crit Rev Food Sci Nutr. 2000;40(1):1–42.

Article  CAS  PubMed  Google Scholar 

Demiray E, Tulek Y, Yilmaz Y. Degradation kinetics of lycopene, β-carotene and ascorbic acid in tomatoes during hot air drying. LWT-Food Sci Technol. 2013;50(1):172–6.

Article  CAS  Google Scholar 

Kim J, Choi SJ. Improving the stability of lycopene from chemical degradation in model beverage emulsions: impact of hydrophilic group size of emulsifier and antioxidant polarity. Foods. 2020;9(8):971.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Honda M, Kageyama H, Hibino T, Takemura R, Goto M, Fukaya T. Enhanced Z-isomerization of tomato lycopene through the optimal combination of food ingredients. Sci Rep. 2019;9(1):7979.

Article  PubMed  PubMed Central  Google Scholar 

Porter SC. Coating of tablets and multiparticulates. In: Aulton ME, Taylor KMG, editors. Aulton’s pharmaceutics: the design and manufacture of medicines. Edinburgh: Churchill Livingstone/Elsevier; 2018. pp. 580–96.

Google Scholar 

Bodmeier R. Tableting of coated pellets. Eur J Pharm Biopharm. 1997;43(1):1–8.

Article  CAS  Google Scholar 

Cheboyina S, Chambliss WG, Wyandt CM. A novel freeze pelletization technique for preparing matrix pellets. Pharm Technol. 2003;28(10):2004–98.

Google Scholar 

Lavanya K, Senthil V, Rathi V. Pelletization technology: a quick review. Int J Pharm Sci Res. 2011;2(6):1337.

CAS  Google Scholar 

McConnell EL, Basit AW. Modified-release oral drug delivery. In: Aulton ME, Taylor KMG, editors. Aulton’s pharmaceutics: the design and manufacture of medicines. Edinburgh: Churchill Livingstone/Elsevier; 2018. pp. 564–79.

Google Scholar 

Khadam VKR, Chawra HS, Singh RP. Extrusion spheronization pelletization technique and Wurster coating (bottom spray). A Review; 2023.

Muley S, Nandgude T, Poddar S. Extrusion–spheronization a promising pelletization technique: In-depth review. Asian J Pharm Sci. 2016;11(6):684–99.

Article  Google Scholar 

Ordoñez-Santos LE, Martínez-Girón J, Villamizar-Vargas RH. Encapsulation of β-carotene extracted from peach palm residues: a stability study using two spray-dried processes. Dyna. 2018;85(206):128–34.

Article  Google Scholar 

A. Nikam, P.R. Sahoo, S. Musale, R.R. Pagar, A.C. Paiva-Santos, P.S. Giram, A Systematic Overview of Eudragit® Based Copolymer for Smart Healthcare, Pharmaceutics 15(2) (2023) 587.

Fahr A. Excipients for drug formulation. In: Fahr A, editor. Voigt’s pharmaceutical technology. Wiley; 2018.

Shen X, Yu D, Zhu L, Branford-White C, White K, Chatterton NP. Electrospun diclofenac sodium loaded Eudragit® L 100 – 55 nanofibers for colon-targeted drug delivery. Int J Pharm. 2011;408(1–2):200–7.

Article  CAS  PubMed  Google Scholar 

Boon CS, McClements DJ, Weiss J, Decker EA. Role of iron and hydroperoxides in the degradation of lycopene in oil-in-water emulsions. J Agric Food Chem. 2009;57(7):2993–8.

Article  CAS  PubMed  Google Scholar 

Rao A, Waseem Z, Agarwal S. Lycopene content of tomatoes and tomato products and their contribution to dietary lycopene. Food Res Int. 1998;31(10):737–41.

Article  CAS  Google Scholar 

Pandya D, Akbari S, Bhatt H, Joshi D, Darji V. Standardization of solvent extraction process for lycopene extraction from tomato pomace. J Appl Biotechnol Bioeng. 2017;2(1):00019.

Google Scholar 

Rodriguez-Amaya DB. A guide to carotenoid analysis in foods. Washington, D. C.: ILSI; 2001.

Google Scholar 

Sardou HS, Akhgari A, Mohammadpour AH, Kamali H, Jafarian AH, Garekani HA, Sadeghi F. Application of inulin/Eudragit RS in 5-ASA pellet coating with tuned, sustained-release feature in an animal model of ulcerative colitis. Int J Pharm. 2021;597:120347.

Article  Google Scholar 

Caseiro M, Ascenso A, Costa A, Creagh-Flynn J, Johnson M, Simões S. Lycopene in human health. LWT. 2020;127:109323.

Article  CAS  Google Scholar 

Shi Y, Gao P, Gong Y, Ping H. Application of a biphasic test for characterization of in vitro drug release of immediate release formulations of celecoxib and its relevance to in vivo absorption. Mol Pharm. 2010;7(5):1458–65.

Article  CAS  PubMed  Google Scholar 

ICH. Stability testing of new drug Substances and products. https://www.ich.org/page/quality-guidelines, 2003).

Dukić-Ott A, Thommes M, Remon JP, Kleinebudde P, Vervaet C. Production of pellets via extrusion–spheronisation without the incorporation of microcrystalline cellulose: a critical review. Eur J Pharm Biopharm. 2009;71(1):38–46.

Article  PubMed  Google Scholar 

Johansson B, Wikberg M, Ek R, Alderborn G. Compression behaviour and compactability of microcrystalline cellulose pellets in relationship to their pore structure and mechanical properties. Int J Pharm. 1995;117(1):57–73.

Article  CAS  Google Scholar 

Sun Y, Tao J, Zhang GG, Yu L. Solubilities of crystalline drugs in polymers: an improved analytical method and comparison of solubilities of indomethacin and nifedipine in PVP, PVP/VA, and PVAc. J Pharm Sci. 2010;99(9):4023–31.

Article  CAS  PubMed  Google Scholar 

Silva ED, Marreto RN, Conceição EC, Bara MT. Preparation of pellets containing a standardized Artemisia annua L. extract by extrusion-spheronization. Revista Fitos. 2021;15(1):84–92.

Lin D, Kelly AL, Miao S. The impact of pH on mechanical properties, storage stability and digestion of alginate-based and soy protein isolate-stabilized emulsion gel beads with encapsulated lycopene. Food Chem. 2022;372:131262.

Article  CAS  PubMed  Google Scholar 

Comments (0)

No login
gif