Sustained Release of Liposomal Caffeine Using Novel Natural Fiber Interlaced Liposomal Technology: Development and Structural Characterisation

Sivrikaya S. A deep eutectic solvent based liquid phase microextraction for the determination of caffeine in Turkish coffee samples by HPLC-UV. Food Addit Contaminants: Part A. 2020;3(3):488–95.

Article  Google Scholar 

Rodak K, Kokot I, Kratz EM. Caffeine as a factor influencing the functioning of the human body-friend or foe? Nutrients. 2021;13(9):3088.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Peng X, Brown M, Bowdler P, Honeychurch KC. Extraction-free, direct determination of caffeine in microliter volumes of beverages by thermal desorption-gas chromatography mass spectrometry. Int J Anal Chem. 2020;1:2020.

Google Scholar 

Russo M, Dugo P, Fanali C, Dugo L, Zoccali M, Mondello L, De Gara L. Use of an online extraction technique coupled to liquid chromatography for determination of caffeine in coffee, tea, and cocoa. Food Anal Methods. 2018;11:2637–44.

Article  Google Scholar 

Cai C, Li F, Liu L, Tan Z. Deep eutectic solvents used as the green media for the efficient extraction of caffeine from Chinese dark tea. Sep Purif Technol. 2019;15:227:115723.

Article  Google Scholar 

Chow CH, Kan YC, Ho KS. A simple and rapid gas chromatographic method for routine caffeine determination in beverages using nitrogen phosphorus detector. J Anal Chem. 2019;74:764–70.

Article  Google Scholar 

Peng Z, Yang Y, Wu R. The Luckin Coffee scandal and short selling attacks. J Behav Experimental Finance. 2022;34:100629.

Article  Google Scholar 

Reddy VS, Shiva S, Manikantan S, Ramakrishna S. Pharmacology of caffeine and its effects on the human body. Eur J Med Chem Rep. 2004;10:100138.

Google Scholar 

Shao M, Li S, Tan CP, Kraithong S, Gao Q, Fu X, Zhang B, Huang Q. Encapsulation of caffeine into starch matrices: bitterness evaluation and suppression mechanism. Int J Biol Macromol. 2021;173:118–27.

Article  CAS  PubMed  Google Scholar 

Mozafari MR, Khosravi-Darani K, Borazan GG, Cui J, Pardakhty A, Yurdugul S. Encapsulation of food ingredients using nanoliposome technology. Int J Food Prop. 2008;18(4):833–44.

Article  Google Scholar 

Pezeshky A, Ghanbarzadeh B, Hamishehkar H, Moghadam M, Babazadeh A. Vitamin a palmitate-bearing nanoliposomes: Preparation and characterization. Food Bioscience. 2016;13(1):49–55.

Article  CAS  Google Scholar 

Ghorbanzade T, Jafari SM, Akhavan S, Hadavi R. Nano-encapsulation of fish oil in nano-liposomes and its application in fortification of yogurt. Food Chem. 2017;1:216:146–52.

Article  Google Scholar 

Muhamad II, Zaidel DN, Hashim Z, Mohammad NA, Bakar NF. Improving the delivery system and bioavailability of beverages through nanoencapsulation. In Nanoengineering in the beverage industry 2020; 1; 301–332. Academic Press.

Sarabandi K, Jafari SM. Effect of chitosan coating on the properties of nanoliposomes loaded with flaxseed-peptide fractions: Stability during spray-drying. Food Chem. 2020;25:310:125951.

Article  Google Scholar 

Subramani T, Ganapathyswamy H. An overview of liposomal nano-encapsulation techniques and its applications in food and nutraceutical. J Food Sci Technol. 2020;57(10):3545–55.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Toniazzo T, Berbel IF, Cho S, Fávaro-Trindade CS, Moraes IC, Pinho SC. β-carotene-loaded liposome dispersions stabilized with xanthan and guar gums: Physico-chemical stability and feasibility of application in yogurt. LWT-food Sci Technol. 2014;59(2):1265–73.

Article  CAS  Google Scholar 

Jacob J, Sukumaran NP, Jude S. Fiber-reinforced-phospholipid vehicle-based delivery of L-ascorbic acid: development, characterization, ADMET profiling, and efficacy by a randomized, single-dose, crossover oral bioavailability study. ACS Omega. 2021;17(8):5560–8.

Article  Google Scholar 

Gabizon A, Horowitz AT, Goren D, Tzemach D, Shmeeda H, Zalipsky S. In vivo fate of folate-targeted polyethylene-glycol liposomes in tumor-bearing mice. Clin Cancer Res. 2003;15(17):6551–9.

Google Scholar 

Sercombe L, Veerati T, Moheimani F, Wu SY, Sood AK, Hua S. Advances and challenges of liposome assisted drug delivery. Front Pharmacol. 2015;6:286.

Article  PubMed  PubMed Central  Google Scholar 

Jyothi VGSS, Bulusu R, Rao BVK, Pranothi M, Banda S, Bolla PK, Kommineni N. Stability characterization for pharmaceutical liposome product development with focus on regulatory considerations: an update. Int J Pharm. 2022;624:122022.

Article  Google Scholar 

Gopi S, Amalraj A, Jacob J, Kalarikkal N, Thomas S, Guo Q. Preparation, characterization and in vitro study of liposomal curcumin powder by cost effective nanofiber weaving technology. New J Chem. 2018;42(7):5117–27.

Article  CAS  Google Scholar 

Akbarzadeh A, Rezaei-Sadabady R, Davaran S, Joo SW, Zarghami N, Hanifehpour Y, Samiei M, Kouhi M, Nejati-Koshk K. Liposome: classification, preparation, and applications. Nanoscale Res Lett. 2013;8:102.

Article  PubMed  PubMed Central  Google Scholar 

Jacob J, Haponiuk JT, Thomas S, Gopi S. Biopolymer based nanomaterials in drug delivery systems: a review. Mater Today Chem. 2018;1:9: 43–55.

Article  Google Scholar 

Amalraj A, Jude S, Varma K, Jacob J, Gopi S, Oluwafemi OS, Thomas S. Preparation of a novel bioavailable curcuminoid formulation (Cureit™) using Polar-Nonpolar-Sandwich (PNS) technology and its characterization and applications. Mater Sci Engineering: C. 2017;1:75: 359–67.

Article  Google Scholar 

Kumar S, Malviya R. Dietary fibers and their derivatives for drug delivery applications: advances and prospective. J Drug Deliv Sci Technol. 2023;89:105084.

Article  CAS  Google Scholar 

Talebi N, Lopes D, Lopes J, Macário-Soares A, Dan AK, Ghanbari R, Kahkesh KH, Peixoto D, Giram PS, Raza F, Veiga F. Natural polymeric nanofibers in transdermal drug delivery. Appl Mater Today. 2023;30:101726.

Article  Google Scholar 

Amalraj A, Varma K, Jacob J, Kuttappan S. Efficacy and safety of a gut health product (actbiome) prepared by incorporation of asafoetida-curcumin complex onto the turmeric dietary fiber in the management of gut health and intestinal microflora in healthy subjects: a randomized, double-blind, placebo-controlled study. Bioactive Carbohydr Diet Fibre. 2021;1:26:100280.

Article  Google Scholar 

Varma K, Jude S, Nair RV, Varghese BA, Jacob J, Amalraj A, Kuttappan S. Novel formulation of liposomal lutein using nanofiber weaving (NFW) technology: antioxidant property and in vitro release studies. Food Hydrocoll Health. 2021;1:1:100025.

Article  CAS  Google Scholar 

Jacob J, Sukumaran NP, Gopi S, Haponiuk JT. Hybrid polymer – metal composites for drug delivery. In: Kesharwani P, Jain NK, editors. Hybrid nanomaterials for drug delivery. Cambridge: Woodhead Publishing; 2022. pp. 165–86.

Chapter  Google Scholar 

Gopi S, Jacob J, Varma K, Jude S, Amalraj A, Arundhathy CA, George R, Sreeraj TR, Divya C, Kunnumakkara AB, Stohs SJ. Comparative oral absorption of curcumin in a natural turmeric matrix with two other curcumin formulations: an open-label parallel‐arm study. Phytother Res. 2017;31(12):1883–91.

Article  CAS  PubMed  Google Scholar 

Jacob J, Peter G, Thomas S, Haponiuk JT, Gopi S. Chitosan and polyvinyl alcohol nanocomposites with cellulose nanofibers from ginger rhizomes and its antimicrobial activities. Int J Biol Macromol. 2019;129:370–6.

Article  CAS  PubMed  Google Scholar 

The United States Pharmacopeia 28/The National Formulary 23, in: The United States Pharmacopeial Convention Inc, Rockville, USA. (2005), pp. 2338–2345.

Najmi A, ur Rehman Z, Zoghebi K, Alhazmi HA, Albratty MM, Haroobi QYH, Sayram IMA, Saleh MA, Qaser WMA, Qaysi AAH. Central composite design (CCD) approach to develop HPLC method for caffeine: application to coffee samples analysis of Jazan region, Saudi Arabia. J Saudi Chem Soc. 2024;28(1):101772.

Article  CAS  Google Scholar 

Odeh F, Ismail SI, Abu-Dahab R, Mahmoud IS, Al Bawab A. Thymoquinone in liposomes: a study of loading efficiency and biological activity towards breast cancer. Drug Delivery. 2012;19:371–7.

Article  CAS  PubMed  Google Scholar 

Sharma VM, Valsaraj TV, Sudeep HV, Raj A, Kodimule S, Jacob J. Preparation, characterization, in vitro and in vivo studies of liposomal berberine using novel natural Fiber interlaced liposomal technology. Eur J Pharm Biopharm. 2024;203:114431.

Ingvarsson PT, Yang M, Nielsen HM, Rantanen J, Foged C. Stabilization of liposomes during drying. Expert Opin Drug Deliv. 2011;8:375–88.

Article  CAS  PubMed  Google Scholar 

Aslan M, Ertas N, Demir MK. Storage stability, heat stability, controlled release and antifungal activity of liposomes as alternative fungal preservation agents. Food Bioscience. 2023;51:102281.

Article  CAS  Google Scholar 

Khatib I, Chow MYT, Ruan J, Cipolla D, Cha H. Modeling of a spray drying method to produce ciprofloxacin nanocrystals inside the liposomes utilizing a response surface methodology: box-behnken experimental design. Int J Pharm. 2021;597:120277.

Article  CAS  PubMed  Google Scholar 

Feng Y, Kilker SR, Lee Y. Surface charge (zeta-potential) of nanoencapsulated food ingredients. In: Jafari SM, editor. Characterization of nanoencapsulated food ingredients volume 4 in Nanoencapsulation in the food industry. London: Academic; 2020. pp. 213–41.

Google Scholar 

Fuentes C, Choi J, Wahlgren M, Nilsson L. Charge and zeta-potential distribution in starch modified with octenyl succinic anhydride (OSA) determined using electrical asymmetrical flow field-flow fractionation (EAF4). Colloids Surf a. 2023;657(A):130570.

Comments (0)

No login
gif