MERS-CoV-nsp5 expression in human epithelial BEAS 2b cells attenuates type I interferon production by inhibiting IRF3 nuclear translocation

Zhang Y, Gargan S, Lu Y, Stevenson NJ (2021) An overview of current knowledge of Deadly CoVs and their interface with innate immunity. Viruses 13(4):560

Article  PubMed  PubMed Central  Google Scholar 

Sørensen MD, Sørensen B, GONZALEZ-DOSAL R, Melchjorsen CJ, Weibel J, Wang J, Jun CW, Huanming Y, Kristensen P (2006) Severe Acute Respiratory Syndrome (SARS) Development of Diagnostics and antivirals, vol 1067. Annals of the New York Academy of Sciences, pp 500–505. 1

WHO. COVID-19 (2023) ; https://covid19.who.int/

Costanzo M, De Giglio MA, Roviello GN (2022) Anti-coronavirus vaccines: past investigations on SARS-CoV-1 and MERS-CoV, the approved vaccines from BioNTech/Pfizer, Moderna, Oxford/AstraZeneca and others under Development Against SARSCoV-2 infection. Curr Med Chem 29(1):4–18

Article  PubMed  Google Scholar 

Rehwinkel JMU, Gack (2020) RIG-I-like receptors: their regulation and roles in RNA sensing. Nat Rev Immunol 20(9):537–551

Article  PubMed  PubMed Central  Google Scholar 

Platanias LC (2005) Mechanisms of type-I-and type-II-interferon-mediated signalling. Nat Rev Immunol 5(5):375–386

Article  PubMed  Google Scholar 

Rabaan AA, Al-Ahmed SH, Haque S, Sah R, Tiwari R, Malik YS, Dhama K, Yatoo MI, Bonilla-Aldana DK, Rodriguez-Morales AJ (2020) SARS-CoV-2, SARS-CoV, and MERS-COV: a comparative overview. Infez Med 28(2):174–184

PubMed  Google Scholar 

CE Comar, CJ Otter, J Pfannenstiel, E Doerger, DM Renner, LH Tan, S Perlman, NA Cohen, AR Fehr, SR Weiss (2022) MERS-CoV endoribonuclease and accessory proteins jointly evade host innate immunity during infection of lung and nasal epithelial cells. Proc Natl Acad Sci 119(21):e2123208119

Liu DX, Fung TS, Chong KK-L, Shukla A, Hilgenfeld R (2014) Accessory proteins of SARS-CoV and other coronaviruses. Antiviral Res 109:97–109

Article  PubMed  PubMed Central  Google Scholar 

Vijay RS, Perlman (2016) Middle East respiratory syndrome and severe acute respiratory syndrome. Curr Opin Virol 16:70–76

Article  PubMed  PubMed Central  Google Scholar 

Chang C-Y, Liu HM, Chang M-F, Chang SC (2020) Middle East respiratory syndrome coronavirus nucleocapsid protein suppresses type I and type III interferon induction by targeting RIG-I signaling. J Virol 94(13):e00099–e00020

Article  PubMed  PubMed Central  Google Scholar 

Lui P-Y, Wong L-YR, Fung C-L, Siu K-L, Yeung M-L, Yuen K-S, Chan C-P, Woo PC-Y, Yuen K-Y, Jin D-Y (2016) Middle East respiratory syndrome coronavirus M protein suppresses type I interferon expression through the inhibition of TBK1-dependent phosphorylation of IRF3, vol 5. Emerging microbes & infections, pp 1–9. 1

Niemeyer D, Zillinger T, Muth D, Zielecki F, Horvath G, Suliman T, Barchet W, Weber F, Drosten C, Müller MA (2013) Middle East respiratory syndrome coronavirus accessory protein 4a is a type I interferon antagonist. J Virol 87(22):12489–12495

Article  PubMed  PubMed Central  Google Scholar 

Yang Y, Ye F, Zhu N, Wang W, Deng Y, Zhao Z, Tan W (2015) Middle East respiratory syndrome coronavirus ORF4b protein inhibits type I interferon production through both cytoplasmic and nuclear targets. Sci Rep 5(1):1–13

Article  Google Scholar 

Wong L-YR, Ye Z-W, Lui P-Y, Zheng X, Yuan S, Zhu L, Fung S-Y, Yuen K-S, Siu K-L, Yeung M-L (2020) Middle east respiratory syndrome coronavirus ORF8b accessory protein suppresses type I IFN expression by impeding HSP70-dependent activation of IRF3 kinase IKKε. J Immunol 205(6):1564–1579

Article  PubMed  Google Scholar 

Yang X, Chen X, Bian G, Tu J, Xing Y, Wang Y, Chen Z (2014) Proteolytic processing, deubiquitinase and interferon antagonist activities of Middle East respiratory syndrome coronavirus papain-like protease. J Gen Virol 95(3):614–626

Article  PubMed  Google Scholar 

Cao D, Duan L, Huang B, Xiong Y, Zhang G, Huang H (2023) The SARS-CoV-2 papain-like protease suppresses type I interferon responses by deubiquitinating STING. Sci Signal 16(783):eadd0082

Article  PubMed  Google Scholar 

Hilgenfeld R (2014) From SARS to MERS: crystallographic studies on coronaviral proteases enable antiviral drug design. FEBS J 281(18):4085–4096

Article  PubMed  PubMed Central  Google Scholar 

He J, Hu L, Huang X, Wang C, Zhang Z, Wang Y, Zhang D, Ye W (2020) Potential of coronavirus 3 C-like protease inhibitors for the development of new anti-SARS-CoV-2 drugs: insights from structures of protease and inhibitors. Int J Antimicrob Agents 56(2):106055

Article  PubMed  PubMed Central  Google Scholar 

Fung S-Y, Siu K-L, Lin H, Yeung ML, Jin D-Y (2021) SARS-CoV-2 main protease suppresses type I interferon production by preventing nuclear translocation of phosphorylated IRF3. Int J Biol Sci 17(6):1547

Article  PubMed  PubMed Central  Google Scholar 

Liu Y, Qin C, Rao Y, Ngo C, Feng JJ, Zhao J, Zhang S, Wang T-Y, Carriere J, Savas AC (2021) SARS-CoV-2 Nsp5 demonstrates two distinct mechanisms targeting RIG-I and MAVS to evade the innate immune response. MBio 12(5):e02335–e02321

Article  PubMed  PubMed Central  Google Scholar 

Wu Y, Ma L, Zhuang Z, Cai S, Zhao Z, Zhou L, Zhang J, Wang P-H, Zhao J, Cui J (2020) Main protease of SARS-CoV-2 serves as a bifunctional molecule in restricting type I interferon antiviral signaling. Signal Transduct Target Therapy 5(1):221

Article  Google Scholar 

Fani M, Teimoori A, Ghafari S (2020) Comparison of the COVID-2019 (SARS-CoV-2) pathogenesis with SARS-CoV and MERS-CoV infections. Future Virol 15(5):317–323

Article  Google Scholar 

Zhu M, Fang T, Li S, Meng K, Guo D (2015) Bipartite nuclear localization signal controls nuclear import and DNA-binding activity of IFN regulatory factor 3. J Immunol 195(1):289–297

Article  PubMed  Google Scholar 

Molecular Operating Environment (MOE), version 2022.02; Chemical Computing Group Inc.: Montreal, QC, Canada. (2022) 02; https://www.chemcomp.com/en/Products.htm

De Ioannes P, Escalante CR, Aggarwal AK (2011) Structures of apo IRF-3 and IRF-7 DNA binding domains: effect of loop L1 on DNA binding. Nucleic Acids Res 39(16):7300–7307

Article  PubMed  PubMed Central  Google Scholar 

Dampalla CS, Miller MJ, Kim Y, Zabiegala A, Nguyen HN, Madden TK, Thurman HA, Machen AJ, Cooper A, Liu L (2023) Structure-guided design of direct-acting antivirals that exploit the gem-dimethyl effect and potently inhibit 3CL proteases of severe acute respiratory syndrome Coronavirus-2 (SARS-CoV-2) and middle east respiratory syndrome coronavirus (MERS-CoV). Eur J Med Chem 254:115376

Article  PubMed  PubMed Central  Google Scholar 

Florio TJ, Lokareddy RK, Yeggoni DP, Sankhala RS, Ott CA, Gillilan RE, Cingolani G (2022) Differential recognition of canonical NF-κB dimers by Importin α3. Nat Commun 13(1):1207

Article  PubMed  PubMed Central  Google Scholar 

Pronk S, Páll S, Schulz R, Larsson P, Bjelkmar P, Apostolov R, Shirts MR, Smith JC, Kasson PM, Van Der Spoel D (2013) GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 29(7):845–854

Article  PubMed  PubMed Central  Google Scholar 

Desta IT, Porter KA, Xia B, Kozakov D, Vajda S (2020) Performance and its limits in rigid body protein-protein docking. Structure 28(9):1071–1081e3

Article  PubMed  PubMed Central  Google Scholar 

Pierce BG, Wiehe K, Hwang H, Kim B-H, Vreven T, Weng Z (2014) ZDOCK server: interactive docking prediction of protein–protein complexes and symmetric multimers. Bioinformatics 30(12):1771–1773

Article  PubMed  PubMed Central  Google Scholar 

Abramson J, Adler J, Dunger J, Evans R, Green T, Pritzel A, Ronneberger O, Willmore L, Ballard AJ, Bambrick J (2024) Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature (630):493–500

Jo S, Kim T, Iyer VG, Im W (2008) CHARMM-GUI: a web‐based graphical user interface for CHARMM. J Comput Chem 29(11):1859–1865

Article  PubMed  Google Scholar 

Turner P Center For Coastal and Land-Margin Research, Oregon Graduate Institute of Science and Technology; Beaverton, Ore, USA: 2005. XMGRACE, Version. 5: p. 19

Liu Y, Qin C, Rao Y, Ngo C, Feng JJ, Zhao J, Zhang S, Wang T-Y, Carriere J, Savas AC (2021) SARS-CoV-2 Nsp5 demonstrates two distinct mechanisms targeting RIG-I and MAVS to evade the innate immune response. MBio 12(5):02335–02321. https://doi.org/10.1128/mbio

Article  Google Scholar 

Zhu X, Fang L, Wang D, Yang Y, Chen J, Ye X, Foda MF, Xiao S (2017) Porcine deltacoronavirus nsp5 inhibits interferon-β production through the cleavage of NEMO. Virology 502:33–38

Article  PubMed  Google Scholar 

Naik NG, Lee S-C, Veronese BH, Ma Z, Toth Z (2022) Interaction of HDAC2 with SARS-CoV-2 NSP5 and IRF3 is not required for NSP5-mediated inhibition of type I interferon signaling pathway. Microbiol Spectr 10(5):e02322–e02322

Article  PubMed  PubMed Central  Google Scholar 

Tran EJ, King MC, Corbett AH (2014) Macromolecular transport between the nucleus and the cytoplasm: advances in mechanism and emerging links to disease. Biochim et Biophys Acta (BBA)-Molecular Cell Res 1843(11):2784–2795

Article 

Comments (0)

No login
gif