Zhang Y, Gargan S, Lu Y, Stevenson NJ (2021) An overview of current knowledge of Deadly CoVs and their interface with innate immunity. Viruses 13(4):560
Article PubMed PubMed Central Google Scholar
Sørensen MD, Sørensen B, GONZALEZ-DOSAL R, Melchjorsen CJ, Weibel J, Wang J, Jun CW, Huanming Y, Kristensen P (2006) Severe Acute Respiratory Syndrome (SARS) Development of Diagnostics and antivirals, vol 1067. Annals of the New York Academy of Sciences, pp 500–505. 1
WHO. COVID-19 (2023) ; https://covid19.who.int/
Costanzo M, De Giglio MA, Roviello GN (2022) Anti-coronavirus vaccines: past investigations on SARS-CoV-1 and MERS-CoV, the approved vaccines from BioNTech/Pfizer, Moderna, Oxford/AstraZeneca and others under Development Against SARSCoV-2 infection. Curr Med Chem 29(1):4–18
Rehwinkel JMU, Gack (2020) RIG-I-like receptors: their regulation and roles in RNA sensing. Nat Rev Immunol 20(9):537–551
Article PubMed PubMed Central Google Scholar
Platanias LC (2005) Mechanisms of type-I-and type-II-interferon-mediated signalling. Nat Rev Immunol 5(5):375–386
Rabaan AA, Al-Ahmed SH, Haque S, Sah R, Tiwari R, Malik YS, Dhama K, Yatoo MI, Bonilla-Aldana DK, Rodriguez-Morales AJ (2020) SARS-CoV-2, SARS-CoV, and MERS-COV: a comparative overview. Infez Med 28(2):174–184
CE Comar, CJ Otter, J Pfannenstiel, E Doerger, DM Renner, LH Tan, S Perlman, NA Cohen, AR Fehr, SR Weiss (2022) MERS-CoV endoribonuclease and accessory proteins jointly evade host innate immunity during infection of lung and nasal epithelial cells. Proc Natl Acad Sci 119(21):e2123208119
Liu DX, Fung TS, Chong KK-L, Shukla A, Hilgenfeld R (2014) Accessory proteins of SARS-CoV and other coronaviruses. Antiviral Res 109:97–109
Article PubMed PubMed Central Google Scholar
Vijay RS, Perlman (2016) Middle East respiratory syndrome and severe acute respiratory syndrome. Curr Opin Virol 16:70–76
Article PubMed PubMed Central Google Scholar
Chang C-Y, Liu HM, Chang M-F, Chang SC (2020) Middle East respiratory syndrome coronavirus nucleocapsid protein suppresses type I and type III interferon induction by targeting RIG-I signaling. J Virol 94(13):e00099–e00020
Article PubMed PubMed Central Google Scholar
Lui P-Y, Wong L-YR, Fung C-L, Siu K-L, Yeung M-L, Yuen K-S, Chan C-P, Woo PC-Y, Yuen K-Y, Jin D-Y (2016) Middle East respiratory syndrome coronavirus M protein suppresses type I interferon expression through the inhibition of TBK1-dependent phosphorylation of IRF3, vol 5. Emerging microbes & infections, pp 1–9. 1
Niemeyer D, Zillinger T, Muth D, Zielecki F, Horvath G, Suliman T, Barchet W, Weber F, Drosten C, Müller MA (2013) Middle East respiratory syndrome coronavirus accessory protein 4a is a type I interferon antagonist. J Virol 87(22):12489–12495
Article PubMed PubMed Central Google Scholar
Yang Y, Ye F, Zhu N, Wang W, Deng Y, Zhao Z, Tan W (2015) Middle East respiratory syndrome coronavirus ORF4b protein inhibits type I interferon production through both cytoplasmic and nuclear targets. Sci Rep 5(1):1–13
Wong L-YR, Ye Z-W, Lui P-Y, Zheng X, Yuan S, Zhu L, Fung S-Y, Yuen K-S, Siu K-L, Yeung M-L (2020) Middle east respiratory syndrome coronavirus ORF8b accessory protein suppresses type I IFN expression by impeding HSP70-dependent activation of IRF3 kinase IKKε. J Immunol 205(6):1564–1579
Yang X, Chen X, Bian G, Tu J, Xing Y, Wang Y, Chen Z (2014) Proteolytic processing, deubiquitinase and interferon antagonist activities of Middle East respiratory syndrome coronavirus papain-like protease. J Gen Virol 95(3):614–626
Cao D, Duan L, Huang B, Xiong Y, Zhang G, Huang H (2023) The SARS-CoV-2 papain-like protease suppresses type I interferon responses by deubiquitinating STING. Sci Signal 16(783):eadd0082
Hilgenfeld R (2014) From SARS to MERS: crystallographic studies on coronaviral proteases enable antiviral drug design. FEBS J 281(18):4085–4096
Article PubMed PubMed Central Google Scholar
He J, Hu L, Huang X, Wang C, Zhang Z, Wang Y, Zhang D, Ye W (2020) Potential of coronavirus 3 C-like protease inhibitors for the development of new anti-SARS-CoV-2 drugs: insights from structures of protease and inhibitors. Int J Antimicrob Agents 56(2):106055
Article PubMed PubMed Central Google Scholar
Fung S-Y, Siu K-L, Lin H, Yeung ML, Jin D-Y (2021) SARS-CoV-2 main protease suppresses type I interferon production by preventing nuclear translocation of phosphorylated IRF3. Int J Biol Sci 17(6):1547
Article PubMed PubMed Central Google Scholar
Liu Y, Qin C, Rao Y, Ngo C, Feng JJ, Zhao J, Zhang S, Wang T-Y, Carriere J, Savas AC (2021) SARS-CoV-2 Nsp5 demonstrates two distinct mechanisms targeting RIG-I and MAVS to evade the innate immune response. MBio 12(5):e02335–e02321
Article PubMed PubMed Central Google Scholar
Wu Y, Ma L, Zhuang Z, Cai S, Zhao Z, Zhou L, Zhang J, Wang P-H, Zhao J, Cui J (2020) Main protease of SARS-CoV-2 serves as a bifunctional molecule in restricting type I interferon antiviral signaling. Signal Transduct Target Therapy 5(1):221
Fani M, Teimoori A, Ghafari S (2020) Comparison of the COVID-2019 (SARS-CoV-2) pathogenesis with SARS-CoV and MERS-CoV infections. Future Virol 15(5):317–323
Zhu M, Fang T, Li S, Meng K, Guo D (2015) Bipartite nuclear localization signal controls nuclear import and DNA-binding activity of IFN regulatory factor 3. J Immunol 195(1):289–297
Molecular Operating Environment (MOE), version 2022.02; Chemical Computing Group Inc.: Montreal, QC, Canada. (2022) 02; https://www.chemcomp.com/en/Products.htm
De Ioannes P, Escalante CR, Aggarwal AK (2011) Structures of apo IRF-3 and IRF-7 DNA binding domains: effect of loop L1 on DNA binding. Nucleic Acids Res 39(16):7300–7307
Article PubMed PubMed Central Google Scholar
Dampalla CS, Miller MJ, Kim Y, Zabiegala A, Nguyen HN, Madden TK, Thurman HA, Machen AJ, Cooper A, Liu L (2023) Structure-guided design of direct-acting antivirals that exploit the gem-dimethyl effect and potently inhibit 3CL proteases of severe acute respiratory syndrome Coronavirus-2 (SARS-CoV-2) and middle east respiratory syndrome coronavirus (MERS-CoV). Eur J Med Chem 254:115376
Article PubMed PubMed Central Google Scholar
Florio TJ, Lokareddy RK, Yeggoni DP, Sankhala RS, Ott CA, Gillilan RE, Cingolani G (2022) Differential recognition of canonical NF-κB dimers by Importin α3. Nat Commun 13(1):1207
Article PubMed PubMed Central Google Scholar
Pronk S, Páll S, Schulz R, Larsson P, Bjelkmar P, Apostolov R, Shirts MR, Smith JC, Kasson PM, Van Der Spoel D (2013) GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 29(7):845–854
Article PubMed PubMed Central Google Scholar
Desta IT, Porter KA, Xia B, Kozakov D, Vajda S (2020) Performance and its limits in rigid body protein-protein docking. Structure 28(9):1071–1081e3
Article PubMed PubMed Central Google Scholar
Pierce BG, Wiehe K, Hwang H, Kim B-H, Vreven T, Weng Z (2014) ZDOCK server: interactive docking prediction of protein–protein complexes and symmetric multimers. Bioinformatics 30(12):1771–1773
Article PubMed PubMed Central Google Scholar
Abramson J, Adler J, Dunger J, Evans R, Green T, Pritzel A, Ronneberger O, Willmore L, Ballard AJ, Bambrick J (2024) Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature (630):493–500
Jo S, Kim T, Iyer VG, Im W (2008) CHARMM-GUI: a web‐based graphical user interface for CHARMM. J Comput Chem 29(11):1859–1865
Turner P Center For Coastal and Land-Margin Research, Oregon Graduate Institute of Science and Technology; Beaverton, Ore, USA: 2005. XMGRACE, Version. 5: p. 19
Liu Y, Qin C, Rao Y, Ngo C, Feng JJ, Zhao J, Zhang S, Wang T-Y, Carriere J, Savas AC (2021) SARS-CoV-2 Nsp5 demonstrates two distinct mechanisms targeting RIG-I and MAVS to evade the innate immune response. MBio 12(5):02335–02321. https://doi.org/10.1128/mbio
Zhu X, Fang L, Wang D, Yang Y, Chen J, Ye X, Foda MF, Xiao S (2017) Porcine deltacoronavirus nsp5 inhibits interferon-β production through the cleavage of NEMO. Virology 502:33–38
Naik NG, Lee S-C, Veronese BH, Ma Z, Toth Z (2022) Interaction of HDAC2 with SARS-CoV-2 NSP5 and IRF3 is not required for NSP5-mediated inhibition of type I interferon signaling pathway. Microbiol Spectr 10(5):e02322–e02322
Article PubMed PubMed Central Google Scholar
Tran EJ, King MC, Corbett AH (2014) Macromolecular transport between the nucleus and the cytoplasm: advances in mechanism and emerging links to disease. Biochim et Biophys Acta (BBA)-Molecular Cell Res 1843(11):2784–2795
Comments (0)