Sethi S, De Vriese AS, Fervenza FC (2022) Acute glomerulonephritis. Lancet 399(10335):1646–1663. https://doi.org/10.1016/S0140-6736(22)00461-5
Fenoglio R, Sciascia S, Baldovino S, Roccatello D (2019) Acute kidney injury associated with glomerular diseases. Curr Opin Crit Care 25(6):573–579. https://doi.org/10.1097/MCC.0000000000000675
Rovin BH, Adler SG, Barratt J, Bridoux F, Burdge KA, Chan TM et al (2021) KDIGO 2021 clinical practice guideline for the management of glomerular diseases. Kidney Int 100(4S):S1-276. https://doi.org/10.1016/j.kint.2021.05.021
Singh JA, Hossain A, Kotb A, Wells G (2016) Risk of serious infections with immunosuppressive drugs and glucocorticoids for lupus nephritis: a systematic review and network meta-analysis. BMC Med 14(1):137. https://doi.org/10.1186/s12916-016-0673-8
Article CAS PubMed PubMed Central Google Scholar
Sun F, Wang H, Zhang D, Han F, Ye S (2022) One-year renal outcome in lupus nephritis patients with acute kidney injury: a nomogram model. Rheumatology (Oxford) 61(7):2886–2893. https://doi.org/10.1093/rheumatology/keab818
Stotter BR, Cody E, Gu H, Daga A, Greenbaum LA, Duong MD et al (2023) Acute kidney injury requiring kidney replacement therapy in childhood lupus nephritis: a cohort study of the Pediatric Nephrology Research Consortium and Childhood Arthritis and Rheumatology Research Alliance. Pediatr Nephrol 38(5):1653–1665. https://doi.org/10.1007/s00467-022-05775-z
Márquez-Macedo SE, Perez-Arias AA, Pena-Vizcarra ÓR, Zavala-Miranda MF, Juárez-Cuevas B, Navarro-Gerrard MA et al (2023) Predictors of treatment outcomes in lupus nephritis with severe acute kidney injury and requirement of dialytic support. Clin Rheumatol 42(8):2115–2123. https://doi.org/10.1007/s10067-023-06629-1
Lind De, van Wijngaarden RAF, Hauer HA, Wolterbeek R, Jayne DRW, Gaskin G, Rasmussen N et al (2007) Chances of renal recovery for dialysis-dependent ANCA-associated glomerulonephritis. J Am Soc Nephrol 18(7):2189–2197. https://doi.org/10.1681/ASN.2007010066
Córdova-Sánchez BM, Mejía-Vilet JM, Morales-Buenrostro LE, Loyola-Rodríguez G, Uribe-Uribe NO, Correa-Rotter R (2016) Clinical presentation and outcome prediction of clinical, serological, and histopathological classification schemes in ANCA-associated vasculitis with renal involvement. Clin Rheumatol 35(7):1805–1816. https://doi.org/10.1007/s10067-016-3195-z
Neumann I, Kain R, Regele H, Soleiman A, Kandutsch S, Meisl FT (2005) Histological and clinical predictors of early and late renal outcome in ANCA-associated vasculitis. Nephrol Dial Transplant 20(1):96–104. https://doi.org/10.1093/ndt/gfh563
Bajema IM, Hagen EC, Hermans J, Noël LH, Waldherr R, Ferrario F et al (1999) Kidney biopsy as a predictor for renal outcome in ANCA-associated necrotizing glomerulonephritis. Kidney Int 56(5):1751–1758. https://doi.org/10.1046/j.1523-1755.1999.00758.x
Article CAS PubMed Google Scholar
Berden AE, Ferrario F, Hagen EC, Jayne DR, Jennette JC, Joh K et al (2010) Histopathologic classification of ANCA-associated glomerulonephritis. J Am Soc Nephrol 21(10):1628–1636. https://doi.org/10.1681/ASN.2010050477
Casal Moura M, Fervenza FC, Specks U, Sethi S (2022) Kidney biopsy chronicity grading in antineutrophil cytoplasmic antibody-associated vasculitis. Nephrol Dial Transplant 37(9):1710–1721. https://doi.org/10.1093/ndt/gfab250
Article CAS PubMed Google Scholar
Brix SR, Noriega M, Tennstedt P, Vettorazzi E, Busch M, Nitschke M et al (2018) Development and validation of a renal risk score in ANCA-associated glomerulonephritis. Kidney Int 94(6):1177–1188. https://doi.org/10.1016/j.kint.2018.07.020
Article CAS PubMed Google Scholar
Bate S, McGovern D, Costigliolo F, Tan PG, Kratky V, Scott J et al (2023) The improved kidney risk score in ANCA-associated vasculitis for clinical practice and trials. J Am Soc Nephrol. https://doi.org/10.1681/ASN.0000000000000274
Cortvrindt C, Speeckaert R, Delanghe JR, Speeckaert MM (2022) Urinary epidermal growth factor: a promising, “Next Generation” biomarker in kidney Disease. Am J Nephrol 53(5):372–387. https://doi.org/10.1159/000524586
Article CAS PubMed Google Scholar
Ju W, Nair V, Smith S, Zhu L, Shedden K, Song PXK et al (2015) Tissue transcriptome-driven identification of epidermal growth factor as a chronic kidney disease biomarker. Sci Transl Med 7(316):316ra193. https://doi.org/10.1126/scitranslmed.aac7071
Article CAS PubMed PubMed Central Google Scholar
Azukaitis K, Ju W, Kirchner M, Nair V, Smith M, Fang Z et al (2019) Low levels of urinary epidermal growth factor predict chronic kidney disease progression in children. Kidney Int 96(1):214–221. https://doi.org/10.1016/j.kint.2019.01.035
Article CAS PubMed Google Scholar
Harskamp LR, Perez-Gomez MV, Heida JE, Engels GE, van Goor H, van den Heuvel MC et al (2023) The association of urinary epidermal growth factors with ADPKD disease severity and progression. Nephrol Dial Transplant 38(10):2266–2275. https://doi.org/10.1093/ndt/gfad050
Article CAS PubMed PubMed Central Google Scholar
Wu L, Li XQ, Chang DY, Zhang H, Li JJ, Wu SL et al (2018) Associations of urinary epidermal growth factor and monocyte chemotactic protein-1 with kidney involvement in patients with diabetic kidney disease. Nephrol Dial Transplant 35(2):291–297. https://doi.org/10.1093/ndt/gfy314
Li B, Zhang Y, Wang F, Nair V, Ding F, Xiao H et al (2018) Urinary epidermal growth factor as a prognostic marker for the progression of Alport syndrome in children. Pediatr Nephrol 33(10):1731–1739. https://doi.org/10.1007/s00467-018-3988-1
Article CAS PubMed PubMed Central Google Scholar
Satrapova V, Sparding N, Genovese F, Karsdal MA, Bartonova L, Frausova D et al (2023) Biomarkers of fibrosis, kidney tissue injury and inflammation may predict severity and outcome of renal ANCA – associated vasculitis. Front Immunol 14:1122972. https://doi.org/10.3389/fimmu.2023.1122972
Article CAS PubMed PubMed Central Google Scholar
Torres DD, Rossini M, Manno C, Mattace-Raso F, D’Altri C, Ranieri E et al (2008) The ratio of epidermal growth factor to monocyte chemotactic peptide-1 in the urine predicts renal prognosis in IgA nephropathy. Kidney Int 73(3):327–333. https://doi.org/10.1038/sj.ki.5002621
Article CAS PubMed Google Scholar
Mejia-Vilet JM, Shapiro JP, Zhang XL, Cruz C, Zimmerman G, Méndez-Pérez RA et al (2021) Association between urinary epidermal growth factor and renal prognosis in lupus nephritis. Arthritis Rheumatol 73(2):244–254. https://doi.org/10.1002/art.41507
Article CAS PubMed Google Scholar
Menez S, Ju W, Menon R, Moledina DG, Philbrook HT, McArthur E et al (2021) Urinary EGF and MCP-1 and risk of CKD after cardiac surgery. JCI Insight 6(11):e147464. https://doi.org/10.1172/jci.insight.147464
Article PubMed PubMed Central Google Scholar
Menez S, Wen Y, Xu L, Moledina DG, Thiessen-Philbrook H, Hu D et al (2023) The ASSESS-AKI Study found urinary epidermal growth factor is associated with reduced risk of major adverse kidney events. Kidney Int 104(6):1194–1205. https://doi.org/10.1016/j.kint.2023.08.007
Article CAS PubMed Google Scholar
Kidney Disease Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group (2012) KDIGO clinical practice guideline for acute kidney injury. Kidney Int Suppl 2:1–138
Bajema IM, Wilhelmus S, Alpers CE, Bruijn JA, Colvin RB, Cook HT et al (2018) Revision of the International Society of Nephrology/Renal Pathology Society classification for lupus nephritis: clarification of definitions, and modified National Institutes of Health activity and chronicity indices. Kidney Int 93(4):789–796. https://doi.org/10.1016/j.kint.2017.11.023
Weening JJ, D’agati VD, Schwartz MM, Seshan SV, Alpers CE, Appel GB et al (2004) The classification of glomerulonephritis in systemic lupus erythematosus revisited. Kidney Int 65(2):521–530. https://doi.org/10.1111/j.1523-1755.2004.00443.x
Comments (0)