López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G (2013) The hallmarks of aging. Cell 153(6):1194–1217. https://doi.org/10.1016/j.cell.2013.05.039
Article PubMed PubMed Central CAS Google Scholar
Morris BJ, Willcox BJ, Donlon TA (2019) Genetic and epigenetic regulation of human aging and longevity. Biochim Biophys Acta Mol Basis Dis 1865(7):1718–1744. https://doi.org/10.1016/j.bbadis.2018.08.039
Article PubMed CAS Google Scholar
Schneider A, Rückerl R, Breitner S, Wolf K, Peters A (2017) Thermal control, weather, and aging. Curr Environ Health Rep 4(1):21–29. https://doi.org/10.1007/s40572-017-0129-0
Partridge L, Deelen J, Slagboom PE (2018) Facing up to the global challenges of ageing. Nature 561(7721):45–56. https://doi.org/10.1038/s41586-018-0457-8
Article PubMed CAS Google Scholar
Longo VD, Anderson RM (2022) Nutrition, longevity and disease: From molecular mechanisms to interventions. Cell 185(9):1455–1470. https://doi.org/10.1016/j.cell.2022.04.002
Article PubMed PubMed Central CAS Google Scholar
Malik VS, Li Y, Tobias DK, Pan A, Hu FB (2016) Dietary protein intake and risk of Type 2 Diabetes in US men and women. Am J Epidemiol 183(8):715–728. https://doi.org/10.1093/aje/kwv268
Article PubMed PubMed Central Google Scholar
Song M, Fung TT, Hu FB, Willett WC, Longo VD, Chan AT, Giovannucci EL (2016) Association of animal and plant protein intake with all-cause and cause-specific mortality. JAMA Intern Med 176(10):1453–1463. https://doi.org/10.1001/jamainternmed.2016.4182
Article PubMed PubMed Central Google Scholar
Budhathoki S, Sawada N, Iwasaki M, Yamaji T, Goto A, Kotemori A, Ishihara J, Takachi R, Charvat H, Mizoue T, Iso H, Tsugane S (2019) Association of animal and plant protein intake with all-cause and cause-specific mortality in a Japanese cohort. JAMA Intern Med 179(11):1509–1518. https://doi.org/10.1001/jamainternmed.2019.2806
Article PubMed PubMed Central Google Scholar
Ortolá R, Struijk EA, García-Esquinas E, Rodríguez-Artalejo F, Lopez-Garcia E (2020) Changes in dietary intake of animal and vegetable protein and unhealthy aging. Am J Med 133(2):231-239.e7. https://doi.org/10.1016/j.amjmed.2019.06.051
Article PubMed CAS Google Scholar
Liao LM, Loftfield E, Etemadi A, Graubard BI, Sinha R (2019) Substitution of dietary protein sources in relation to colorectal cancer risk in the NIH-AARP cohort study. Cancer Causes Control 30(10):1127–1135. https://doi.org/10.1007/s10552-019-01210-1
Article PubMed PubMed Central Google Scholar
Huang J, Liao LM, Weinstein SJ, Sinha R, Graubard BI, Albanes D (2020) Association between plant and animal protein intake and overall and cause-specific mortality. JAMA Intern Med 180(9):1173–1184. https://doi.org/10.1001/jamainternmed.2020.2790
Article PubMed CAS Google Scholar
Hägg S, Belsky DW, Cohen AA (2019) Developments in molecular epidemiology of aging. Emerg Top Life Sci 3(4):411–421. https://doi.org/10.1042/ETLS20180173
Article PubMed PubMed Central Google Scholar
Levine ME (2013) Modeling the rate of senescence: can estimated biological age predict mortality more accurately than chronological age. J Gerontol A Biol Sci Med Sci 68(6):667–674. https://doi.org/10.1093/gerona/gls233
Gao X, Huang N, Guo X, Huang T (2022) Role of sleep quality in the acceleration of biological aging and its potential for preventive interaction on air pollution insults: findings from the UK Biobank cohort. Aging Cell 21(5):e13610. https://doi.org/10.1111/acel.13610
Article PubMed PubMed Central CAS Google Scholar
Gao X, Geng T, Jiang M, Huang N, Zheng Y, Belsky DW, Huang T (2023) Accelerated biological aging and risk of depression and anxiety: evidence from 424,299 UK Biobank participants. Nat Commun 14(1):2277. https://doi.org/10.1038/s41467-023-38013-7
Article PubMed PubMed Central CAS Google Scholar
Mak J, McMurran CE, Kuja-Halkola R, Hall P, Czene K, Jylhava J, Hagg S (2023) Clinical biomarker-based biological aging and risk of cancer in the UK Biobank. Br J Cancer 129(1):94–103. https://doi.org/10.1038/s41416-023-02288-w
Article PubMed PubMed Central CAS Google Scholar
Xie R, Ning Z, Xiao M, Li L, Liu M, Zhang Y (2023) Dietary inflammatory potential and biological aging among US adults: a population-based study. Aging Clin Exp Res 35(6):1273–1281. https://doi.org/10.1007/s40520-023-02410-1
McCrory C, Fiorito G, McLoughlin S, Polidoro S, Cheallaigh CN, Bourke N, Karisola P, Alenius H, Vineis P, Layte R, Kenny RA (2020) Epigenetic clocks and allostatic load reveal potential sex-specific drivers of biological aging. J Gerontol A Biol Sci Med Sci 75(3):495–503. https://doi.org/10.1093/gerona/glz241
Article PubMed CAS Google Scholar
Guidi J, Lucente M, Sonino N, Fava GA (2021) Allostatic load and its impact on health: a systematic review. Psychother Psychosom 90(1):11–27. https://doi.org/10.1159/000510696
Karlamangla AS, Singer BH, McEwen BS, Rowe JW, Seeman TE (2002) Allostatic load as a predictor of functional decline. MacArthur studies of successful aging. J Clin Epidemiol 55(7):696–710. https://doi.org/10.1016/s0895-4356(02)00399-2
Parker HW, Abreu AM, Sullivan MC, Vadiveloo MK (2022) Allostatic load and mortality: a systematic review and meta-analysis. Am J Prev Med 63(1):131–140. https://doi.org/10.1016/j.amepre.2022.02.003
Blackburn EH (1991) Structure and function of telomeres. Nature 350(6319):569–573. https://doi.org/10.1038/350569a0
Article PubMed CAS Google Scholar
Chakravarti D, LaBella KA, DePinho RA (2021) Telomeres: history, health, and hallmarks of aging. Cell 184(2):306–322. https://doi.org/10.1016/j.cell.2020.12.028
Article PubMed PubMed Central CAS Google Scholar
Sudlow C, Gallacher J, Allen N, Beral V, Burton P, Danesh J, Downey P, Elliott P, Green J, Landray M, Liu B, Matthews P, Ong G, Pell J, Silman A, Young A, Sprosen T, Peakman T, Collins R (2015) UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med 12(3):e1001779. https://doi.org/10.1371/journal.pmed.1001779
Article PubMed PubMed Central Google Scholar
Galante J, Adamska L, Young A, Young H, Littlejohns TJ, Gallacher J, Allen N (2016) The acceptability of repeat Internet-based hybrid diet assessment of previous 24-h dietary intake: administration of the Oxford WebQ in UK Biobank. Br J Nutr 115(4):681–686. https://doi.org/10.1017/S0007114515004821
Article PubMed CAS Google Scholar
Greenwood DC, Hardie LJ, Frost GS, Alwan NA, Bradbury KE, Carter M, Elliott P, Evans C, Ford HE, Hancock N, Key TJ, Liu B, Morris MA, Mulla UZ, Petropoulou K, Potter G, Riboli E, Young H, Wark PA, Cade JE (2019) Validation of the Oxford WebQ online 24-hour dietary questionnaire using biomarkers. Am J Epidemiol 188(10):1858–1867. https://doi.org/10.1093/aje/kwz165
Article PubMed PubMed Central Google Scholar
Perez-Cornago A, Pollard Z, Young H, van Uden M, Andrews C, Piernas C, Key TJ, Mulligan A, Lentjes M (2021) Description of the updated nutrition calculation of the Oxford WebQ questionnaire and comparison with the previous version among 207,144 participants in UK Biobank. Eur J Nutr 60(7):4019–4030. https://doi.org/10.1007/s00394-021-02558-4
Article PubMed PubMed Central CAS Google Scholar
Piernas C, Perez-Cornago A, Gao M, Young H, Pollard Z, Mulligan A, Lentjes M, Carter J, Bradbury K, Key TJ, Jebb SA (2021) Describing a new food group classification system for UK biobank: analysis of food groups and sources of macro- and micronutrients in 208,200 participants. Eur J Nutr 60(5):2879–2890.
Comments (0)