Thapar A, Eyre O, Patel V, Brent D (2022) Depression in young people. Lancet 400(10352):617–631. https://doi.org/10.1016/s0140-6736(22)01012-1
Monroe SM, Harkness KL (2022) Major Depression and its recurrences: life course matters. Annu Rev Clin Psychol 18:329–357. https://doi.org/10.1146/annurev-clinpsy-072220-021440
Mayneris-Perxachs J, Castells-Nobau A, Arnoriaga-Rodríguez M, Martin M, de la Vega-Correa L, Zapata C, Burokas A, Blasco G, Coll C, Escrichs A, Biarnés C, Moreno-Navarrete JM, Puig J, Garre-Olmo J, Ramos R, Pedraza S, Brugada R, Vilanova JC, Serena J, Gich J, Ramió-Torrentà L, Pérez-Brocal V, Moya A, Pamplona R, Sol J, Jové M, Ricart W, Portero-Otin M, Deco G, Maldonado R, Fernández-Real JM (2022) Microbiota alterations in proline metabolism impact depression. Cell Metab 34(5):681–701e610. https://doi.org/10.1016/j.cmet.2022.04.001
Article CAS PubMed Google Scholar
Liu T, Deng K, Xue Y, Yang R, Yang R, Gong Z, Tang M (2022) Carnitine and depression. Front Nutr 9:853058. https://doi.org/10.3389/fnut.2022.853058
Article CAS PubMed PubMed Central Google Scholar
Li GH, Cheung CL, Chung AK, Cheung BM, Wong IC, Fok MLY, Au PC, Sham PC (2022) Evaluation of bi-directional causal association between depression and cardiovascular diseases: a mendelian randomization study. Psychol Med 52(9):1765–1776. https://doi.org/10.1017/s0033291720003566
Cao H, Zuo C, Huang Y, Zhu L, Zhao J, Yang Y, Jiang Y, Wang F (2021) Hippocampal proteomic analysis reveals activation of necroptosis and ferroptosis in a mouse model of chronic unpredictable mild stress-induced depression. Behav Brain Res 407:113261. https://doi.org/10.1016/j.bbr.2021.113261
Article CAS PubMed Google Scholar
Cui Z, Zhao X, Amevor FK, Du X, Wang Y, Li D, Shu G, Tian Y, Zhao X (2022) Therapeutic application of quercetin in aging-related diseases: SIRT1 as a potential mechanism. Front Immunol 13:943321. https://doi.org/10.3389/fimmu.2022.943321
Article CAS PubMed PubMed Central Google Scholar
Dang R, Wang M, Li X, Wang H, Liu L, Wu Q, Zhao J, Ji P, Zhong L, Licinio J, Xie P (2022) Edaravone ameliorates depressive and anxiety-like behaviors via Sirt1/Nrf2/HO-1/Gpx4 pathway. J Neuroinflammation 19(1):41. https://doi.org/10.1186/s12974-022-02400-6
Article CAS PubMed PubMed Central Google Scholar
Jiao H, Yang H, Yan Z, Chen J, Xu M, Jiang Y, Liu Y, Xue Z, Ma Q, Li X, Chen J (2021) Traditional Chinese Formula Xiaoyaosan alleviates depressive-like Behavior in CUMS mice by regulating PEBP1-GPX4-Mediated ferroptosis in the Hippocampus. Neuropsychiatr Dis Treat 17:1001–1019. https://doi.org/10.2147/ndt.S302443
Article PubMed PubMed Central Google Scholar
Shimizu J, Murao A, Nofi C, Wang P, Aziz M (2022) Extracellular CIRP promotes GPX4-Mediated ferroptosis in Sepsis. Front Immunol 13:903859. https://doi.org/10.3389/fimmu.2022.903859
Article CAS PubMed PubMed Central Google Scholar
Zhang M, Lyu D, Wang F, Shi S, Wang M, Yang W, Huang H, Wei Z, Chen S, Xu Y, Hong W (2022) Ketamine may exert Rapid Antidepressant effects through Modulation of Neuroplasticity, Autophagy, and ferroptosis in the Habenular Nucleus. Neuroscience 506:29–37. https://doi.org/10.1016/j.neuroscience.2022.10.015
Article CAS PubMed Google Scholar
Zuo C, Cao H, Song Y, Gu Z, Huang Y, Yang Y, Miao J, Zhu L, Chen J, Jiang Y, Wang F (2022) Nrf2: an all-rounder in depression. Redox Biol 58:102522. https://doi.org/10.1016/j.redox.2022.102522
Article CAS PubMed PubMed Central Google Scholar
Ali T, Rahman SU, Hao Q, Li W, Liu Z, Ali Shah F, Murtaza I, Zhang Z, Yang X, Liu G, Li S (2020) Melatonin prevents neuroinflammation and relieves depression by attenuating autophagy impairment through FOXO3a regulation. J Pineal Res 69(2):e12667. https://doi.org/10.1111/jpi.12667
Article CAS PubMed Google Scholar
Bailey MJ, Coon SL, Carter DA, Humphries A, Kim JS, Shi Q, Gaildrat P, Morin F, Ganguly S, Hogenesch JB, Weller JL, Rath MF, Moller M, Baler R, Sugden D, Rangel ZG, Munson PJ, Klein DC (2009) Night/day changes in pineal expression of > 600 genes: central role of adrenergic/cAMP signaling. J Biol Chem 284(12):7606–7622. https://doi.org/10.1074/jbc.M808394200
Article CAS PubMed PubMed Central Google Scholar
Alexiuk NA, Uddin M, Vriend J (1996) Melatonin increases the in situ activity of tyrosine hydroxylase in the mediobasal hypothalamus of male Syrian hamsters. Life Sci 59(8):687–694. https://doi.org/10.1016/0024-3205(96)00350-5
Article CAS PubMed Google Scholar
Tonon AC, Pilz LK, Markus RP, Hidalgo MP, Elisabetsky E (2021) Melatonin and depression: a translational perspective from animal models to Clinical studies. Front Psychiatry 12:638981. https://doi.org/10.3389/fpsyt.2021.638981
Article PubMed PubMed Central Google Scholar
Ahmad MH, Rizvi MA, Ali M, Mondal AC (2023) Neurobiology of depression in Parkinson’s disease: insights into epidemiology, molecular mechanisms and treatment strategies. Ageing Res Rev 85:101840. https://doi.org/10.1016/j.arr.2022.101840
Article CAS PubMed Google Scholar
Krishnan V, Nestler EJ (2008) The molecular neurobiology of depression. Nature 455(7215):894–902. https://doi.org/10.1038/nature07455
Article CAS PubMed PubMed Central Google Scholar
Krishnan V, Nestler EJ (2011) Animal models of depression: molecular perspectives. Curr Top Behav Neurosci 7:121–147. https://doi.org/10.1007/7854_2010_108
Article PubMed PubMed Central Google Scholar
Geoffroy PA, Palagini L (2021) Biological rhythms and chronotherapeutics in depression. Prog Neuropsychopharmacol Biol Psychiatry 106:110158. https://doi.org/10.1016/j.pnpbp.2020.110158
Detanico BC, Piato AL, Freitas JJ, Lhullier FL, Hidalgo MP, Caumo W, Elisabetsky E (2009) Antidepressant-like effects of melatonin in the mouse chronic mild stress model. Eur J Pharmacol 607(1–3):121–125. https://doi.org/10.1016/j.ejphar.2009.02.037
Article CAS PubMed Google Scholar
Ergün Y, Orhan FO, Karaaslan MF (2008) Combination therapy of imipramine and melatonin: additive antidepressant effect in mouse forced swimming test. Eur J Pharmacol 591(1–3):159–163. https://doi.org/10.1016/j.ejphar.2008.06.070
Article CAS PubMed Google Scholar
Papp M, Gruca P, Boyer PA, Mocaër E (2003) Effect of agomelatine in the chronic mild stress model of depression in the rat. Neuropsychopharmacology 28(4):694–703. https://doi.org/10.1038/sj.npp.1300091
Article CAS PubMed Google Scholar
Arioz BI, Tastan B, Tarakcioglu E, Tufekci KU, Olcum M, Ersoy N, Bagriyanik A, Genc K, Genc S (2019) Melatonin attenuates LPS-Induced Acute Depressive-Like behaviors and Microglial NLRP3 inflammasome activation through the SIRT1/Nrf2 pathway. Front Immunol 10:1511. https://doi.org/10.3389/fimmu.2019.01511
Article CAS PubMed PubMed Central Google Scholar
Zhao X, Cao F, Liu Q, Li X, Xu G, Liu G, Zhang Y, Yang X, Yi S, Xu F, Fan K, Ma J (2019) Behavioral, inflammatory and neurochemical disturbances in LPS and UCMS-induced mouse models of depression. Behav Brain Res 364:494–502. https://doi.org/10.1016/j.bbr.2017.05.064
Article CAS PubMed Google Scholar
El Hayek L, Khalifeh M, Zibara V, Abi Assaad R, Emmanuel N, Karnib N, El-Ghandour R, Nasrallah P, Bilen M, Ibrahim P, Younes J, Abou Haidar E, Barmo N, Jabre V, Stephan JS, Sleiman SF (2019) Lactate mediates the effects of Exercise on Learning and Memory through SIRT1-Dependent activation of hippocampal brain-derived neurotrophic factor (BDNF). J Neurosci 39(13):2369–2382. https://doi.org/10.1523/jneurosci.1661-18.2019
Comments (0)