Parola M, Pinzani M (2019) Liver fibrosis: pathophysiology, pathogenetic targets and clinical issues. Mol Aspects Med 65:37–55
Article CAS PubMed Google Scholar
Higashi T, Friedman SL, Hoshida Y (2017) Hepatic stellate cells as key target in liver fibrosis. Adv Drug Deliv Rev 121:27–42
Article CAS PubMed PubMed Central Google Scholar
Puche JE, Saiman Y, Friedman SL (2013) Hepatic stellate cells and liver fibrosis. Compr Physiol 3(4):1473–1492
Tang G, Xu Y, Zhang C, Wang N, Li H, Feng Y (2021) Green Tea and Epigallocatechin Gallate (EGCG) for the Management of Nonalcoholic Fatty Liver Diseases (NAFLD): Insights into the Role of Oxidative Stress and Antioxidant Mechanism. Antioxidants (Basel, Switzerland). ; 10(7)
Cai Y, Kurita-Ochiai T, Hashizume T, Yamamoto M (2013) Green tea epigallocatechin-3-gallate attenuates Porphyromonas gingivalis-induced atherosclerosis. Pathogens Disease 67(1):76–83
Article CAS PubMed Google Scholar
Hong J, Lu H, Meng X, Ryu JH, Hara Y, Yang CS (2002) Stability, cellular uptake, biotransformation, and efflux of tea polyphenol (-)-epigallocatechin-3-gallate in HT-29 human colon adenocarcinoma cells. Cancer Res 62(24):7241–7246
George J, Tsuchishima M, Tsutsumi M (2022) Epigallocatechin-3-gallate inhibits osteopontin expression and prevents experimentally induced hepatic fibrosis. Biomed Pharmacotherapy = Biomedecine Pharmacotherapie 151:113111
Article CAS PubMed Google Scholar
Matikainen N, Pekkarinen T, Ryhänen EM, Schalin-Jäntti C (2021) Physiology of Calcium Homeostasis: an overview. Endocrinol Metab Clin North Am 50(4):575–590
Huang Y, Zhang A, Lau CW, Chen ZY (1998) Vasorelaxant effects of purified green tea epicatechin derivatives in rat mesenteric artery. Life Sci 63(4):275–283
Article CAS PubMed Google Scholar
Inoue T, Suzuki Y, Ra C (2011) Epigallocatechin-3-gallate induces cytokine production in mast cells by stimulating an extracellular superoxide-mediated calcium influx. Biochem Pharmacol 82(12):1930–1939
Article CAS PubMed Google Scholar
Quarato G, Llambi F, Guy CS, Min J, Actis M, Sun H et al (2022) Ca(2+)-mediated mitochondrial inner membrane permeabilization induces cell death independently of Bax and Bak. Cell Death Differ 29(7):1318–1334
Article CAS PubMed PubMed Central Google Scholar
Lu L, Mobilizing (2021) ER IP3 receptors as a mechanism to enhance calcium signaling. Cell Mol Immunol 18(9):2284–2285
Article CAS PubMed PubMed Central Google Scholar
Kondo R, Kawata N, Suzuki Y, Yamamura H (2022) Ca(2+) signaling and proliferation via ca(2+)-Sensing receptors in human hepatic stellate LX-2 cells. Biol Pharm Bull 45(5):664–667
Article CAS PubMed Google Scholar
Yuan H, Li Y, Ling F, Guan Y, Zhang D, Zhu Q et al (2020) The phytochemical epigallocatechin gallate prolongs the lifespan by improving lipid metabolism, reducing inflammation and oxidative stress in high-fat diet-fed obese rats. Aging Cell 19(9):e13199
Article CAS PubMed PubMed Central Google Scholar
Tipoe GL, Leung TM, Liong EC, Lau TY, Fung ML, Nanji AA (2010) Epigallocatechin-3-gallate (EGCG) reduces liver inflammation, oxidative stress and fibrosis in carbon tetrachloride (CCl4)-induced liver injury in mice. Toxicology 273(1–3):45–52
Article CAS PubMed Google Scholar
Iizuka M, Murata T, Hori M, Ozaki H (2011) Increased contractility of hepatic stellate cells in cirrhosis is mediated by enhanced Ca2+-dependent and Ca2+-sensitization pathways. Am J Physiol Gastrointest Liver Physiol 300(6):G1010–G1021
Article CAS PubMed Google Scholar
Purkiss JR, Willars GB (1996) Ionomycin induced changes in intracellular free calcium in SH-SY5Y human neuroblastoma cells: sources of calcium and effects on [3H]-noradrenaline release. Cell Calcium 20(1):21–29
Article CAS PubMed Google Scholar
Singh A, Bhatnagar N, Pandey A, Pandey GK (2015) Plant phospholipase C family: regulation and functional role in lipid signaling. Cell Calcium 58(2):139–146
Article CAS PubMed Google Scholar
Luo X, Dan W, Luo X, Zhu X, Wang G, Ning Z et al (2017) Caveolin 1-related autophagy initiated by aldosterone-induced oxidation promotes liver sinusoidal endothelial cells defenestration. Redox Biol 13:508–521
Article CAS PubMed PubMed Central Google Scholar
Xie LW, Cai S, Zhao TS, Li M, Tian Y (2020) Green tea derivative (-)-epigallocatechin-3-gallate (EGCG) confers protection against ionizing radiation-induced intestinal epithelial cell death both in vitro and in vivo. Free Radic Biol Med 161:175–186
Article CAS PubMed Google Scholar
Fang S, Wan X, Zou X, Sun S, Hao X, Liang C et al (2021) Arsenic trioxide induces macrophage autophagy and atheroprotection by regulating ROS-dependent TFEB nuclear translocation and AKT/mTOR pathway. Cell Death Dis 12(1):88
Article CAS PubMed PubMed Central Google Scholar
Noguchi-Shinohara M, Yuki S, Dohmoto C, Ikeda Y, Samuraki M, Iwasa K et al (2014) Consumption of green tea, but not black tea or coffee, is associated with reduced risk of cognitive decline. PLoS ONE 9(5):e96013
Article PubMed PubMed Central Google Scholar
Mosteller RD (1987) Simplified calculation of body-surface area. N Engl J Med 317(17):1098
Article CAS PubMed Google Scholar
Eiseman JL, Sciullo M, Wang H, Beumer JH, Horn CC (2017) Estimation of body surface area in the musk shrew (Suncus murinus): a small animal for testing chemotherapy-induced emesis. Lab Anim 51(5):534–537
Article CAS PubMed PubMed Central Google Scholar
Hu J, Webster D, Cao J, Shao A (2018) The safety of green tea and green tea extract consumption in adults - results of a systematic review. Regul Toxicol Pharmacology: RTP 95:412–433
Article CAS PubMed Google Scholar
Kochi T, Shimizu M, Terakura D, Baba A, Ohno T, Kubota M et al (2014) Non-alcoholic steatohepatitis and preneoplastic lesions develop in the liver of obese and hypertensive rats: suppressing effects of EGCG on the development of liver lesions. Cancer Lett 342(1):60–69
Article CAS PubMed Google Scholar
Yumei F, Zhou Y, Zheng S, Chen A (2006) The antifibrogenic effect of (-)-epigallocatechin gallate results from the induction of de novo synthesis of glutathione in passaged rat hepatic stellate cells. Lab Invest 86(7):697–709
Fu Y, Chen A (2006) The phyto-chemical (-)-epigallocatechin gallate suppresses gene expression of epidermal growth factor receptor in rat hepatic stellate cells in vitro by reducing the activity of Egr-1. Biochem Pharmacol 72(2):227–238
Article CAS PubMed Google Scholar
Yu DK, Zhang CX, Zhao SS, Zhang SH, Zhang H, Cai SY et al (2015) The anti-fibrotic effects of epigallocatechin-3-gallate in bile duct-ligated cholestatic rats and human hepatic stellate LX-2 cells are mediated by the PI3K/Akt/Smad pathway. Acta Pharmacol Sin 36(4):473–482
Article CAS PubMed PubMed Central Google Scholar
Carafoli E (1987) Intracellular calcium homeostasis. Annu Rev Biochem 56:395–433
Article CAS PubMed Google Scholar
Müller MS, Obel LF, Waagepetersen HS, Schousboe A, Bak LK (2013) Complex actions of ionomycin in cultured cerebellar astrocytes affecting both calcium-induced calcium release and store-operated calcium entry. Neurochem Res 38(6):1260–1265
Comments (0)