Exploring fine-scale urban landscapes using satellite data to predict the distribution of Aedes mosquito breeding sites

Kolimenakis A, Heinz S, Wilson ML, Winkler V, Yakob L, Michaelakis A, et al. The role of urbanisation in the spread of Aedes mosquitoes and the diseases they transmit—A systematic review. PLoS Negl Trop Dis. 2021;15(9):e0009631.

Article  PubMed  PubMed Central  Google Scholar 

Kraemer MU, Sinka ME, Duda KA, Mylne AQ, Shearer FM, Barker CM et al. The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus. Jit M, editor. eLife. 2015;4:e08347.

Duvallet G, Fontenille D, Robert V, editors. Entomologie médicale et vétérinaire [Internet]. Marseille: IRD; 2017. http://www.documentation.ird.fr/hor/fdi:010069823.

Lwande OW, Obanda V, Lindström A, Ahlm C, Evander M, Näslund J et al. Globe-Trotting Aedes aegypti and Aedes albopictus: Risk Factors for Arbovirus Pandemics. Vector-Borne Zoonotic Dis [Internet]. 2019; https://www.liebertpub.com/doi/https://doi.org/10.1089/vbz.2019.2486.

LaDeau SL, Allan BF, Leisnham PT, Levy MZ. The ecological foundations of transmission potential and vector-borne disease in urban landscapes. Funct Ecol. 2015;29(7):889–901.

Article  PubMed  PubMed Central  Google Scholar 

Abílio AP, Abudasse G, Kampango A, Candrinho B, Sitoi S, Luciano J, et al. Distribution and breeding sites of Aedes aegypti and Aedes albopictus in 32 urban/peri-urban districts of Mozambique: implication for assessing the risk of arbovirus outbreaks. PLoS Negl Trop Dis. 2018;12(9):e0006692.

Article  PubMed  PubMed Central  Google Scholar 

Marti R, Li Z, Catry T, Roux E, Mangeas M, Handschumacher P, et al. A Mapping Review on Urban Landscape factors of Dengue retrieved from Earth Observation Data, GIS techniques, and Survey questionnaires. Remote Sens. 2020;12(6):932.

Article  Google Scholar 

Bonifay T, Le Turnier P, Epelboin Y, Carvalho L, De Thoisy B, Djossou F, et al. Review on Main arboviruses circulating on French Guiana, an Ultra-peripheric European Region in South America. Viruses. 2023;15(6):1268.

Article  PubMed  PubMed Central  Google Scholar 

Talaga S. Écologie, diversité et évolution des moustiques (Diptera Culicidae) de Guyane française: implications dans l’invasion biologique du moustique Aedes aegypti (L.) [Internet] [phdthesis]. Université de Guyane; 2016. p. 217 p. https://hal.inrae.fr/tel-02795002.

Epelboin Y, Chaney SC, Guidez A, Habchi-Hanriot N, Talaga S, Wang L, et al. Successes and failures of sixty years of vector control in French Guiana: what is the next step? Mem Inst Oswaldo Cruz. 2018;113:e170398.

Article  PubMed  PubMed Central  Google Scholar 

Guidez A, Pocquet N, Restrepo J, Mathieu L, Gaborit P, Issaly J, et al. Spatiotemporal multiple insecticide resistance in Aedes aegypti populations in French Guiana: need for alternative vector control. Mem Inst Oswaldo Cruz. 2021;115:e200313.

Article  PubMed  PubMed Central  Google Scholar 

SPF. Bulletin de santé publique dengue en Guyane. Septembre 2023. [Internet]. 2023. https://www.santepubliquefrance.fr/regions/guyane/documents/bulletin-regional/2023/bulletin-de-sante-publique-dengue-en-guyane.-septembre-2023.

Paraná VC, Feitosa CA, da Silva GCS, Gois LL, Santos LA. Risk factors associated with severe dengue in Latin America: a systematic review and meta-analysis. Trop Med Int Health. 2024;29(3):173–91.

Article  PubMed  Google Scholar 

Zhu Z, Zhou Y, Seto KC, Stokes EC, Deng C, Pickett STA, et al. Understanding an urbanizing planet: Strategic directions for remote sensing. Remote Sens Environ. 2019;228:164–82.

Article  Google Scholar 

Lorenz C, Chiaravalloti-Neto F, de Oliveira Lage M, Quintanilha JA, Parra MC, Dibo MR, et al. Remote sensing for risk mapping of Aedes aegypti infestations: is this a practical task? Acta Trop. 2020;205:105398.

Article  PubMed  Google Scholar 

Yu D, Fang C. Urban Remote sensing with spatial Big data: a review and renewed perspective of Urban studies in recent decades. Remote Sens. 2023;15(5):1307.

Article  Google Scholar 

Kopecká M, Szatmári D, Rosina K. Analysis of Urban Green spaces based on Sentinel-2A: Case studies from Slovakia. Land. 2017;6(2):25.

Article  Google Scholar 

Yin J, Dong J, Hamm NAS, Li Z, Wang J, Xing H, et al. Integrating remote sensing and geospatial big data for urban land use mapping: a review. Int J Appl Earth Obs Geoinf. 2021;103:102514.

Google Scholar 

Liu T, Yang X. Monitoring land changes in an urban area using satellite imagery, GIS and landscape metrics. Appl Geogr. 2015;56:42–54.

Article  Google Scholar 

Xing H, Meng Y. Measuring urban landscapes for urban function classification using spatial metrics. Ecol Indic. 2020;108:105722.

Article  Google Scholar 

Mathan M, Krishnaveni M. Monitoring spatio-temporal dynamics of urban and peri-urban land transitions using ensemble of remote sensing spectral indices—a case study of Chennai Metropolitan Area, India. Environ Monit Assess. 2019;192(1):15.

Google Scholar 

de Almeida CR, Teodoro AC, Gonçalves A. Study of the Urban Heat Island (UHI) using Remote Sensing Data/Techniques: a systematic review. Environments. 2021;8(10):105.

Article  Google Scholar 

Liang B, Weng Q. Characterizing Urban Landscape by using Fractal-based texture information. Photogramm Eng Remote Sens. 2018;84(11):695–710.

Article  Google Scholar 

Hoang ND. Automatic impervious surface area detection using image texture analysis and neural Computing models with Advanced optimizers. Comput Intell Neurosci. 2021;2021:e8820116.

Article  Google Scholar 

Liao HY, Wen TH. Extracting urban water bodies from high-resolution radar images: measuring the urban surface morphology to control for radar’s double-bounce effect. Int J Appl Earth Obs Geoinf. 2020;85:102003.

Google Scholar 

Scavuzzo JM, Trucco F, Espinosa M, Tauro CB, Abril M, Scavuzzo CM, et al. Modeling dengue vector population using remotely sensed data and machine learning. Acta Trop. 2018;185:167–75.

Article  PubMed  Google Scholar 

Lorenz C, Castro MC, Trindade PMP, Nogueira ML, de Oliveira Lage M, Quintanilha JA, et al. Predicting Aedes aegypti infestation using landscape and thermal features. Sci Rep. 2020;10(1):21688.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Andreo V, Cuervo PF, Porcasi X, Lopez L, Guzman C, Scavuzzo CM. Towards a workflow for operational mapping of Aedes aegypti at urban scale based on remote sensing. Remote Sens Appl Soc Environ. 2021;23:100554.

Google Scholar 

Estallo EL, Lamfri MA, Scavuzzo CM, Almeida FFL, Introini MV, Zaidenberg M, et al. Models for Predicting Aedes aegypti Larval Indices based on Satellite images and climatic variables. J Am Mosq Control Assoc. 2008;24(3):368–76.

Article  PubMed  Google Scholar 

Estallo EL, Sangermano F, Grech M, Ludueña-Almeida F, Frías-Cespedes M, Ainete M, et al. Modelling the distribution of the vector aedes aegypti in a central Argentine city. Med Vet Entomol. 2018;32(4):451–61.

Article  CAS  PubMed  Google Scholar 

Bailly S, Machault V, Beneteau S, Palany P, Girod R, Lacaux JP et al. Modeling spatiotemporal Aedes aegypti risk in French guiana using meteorological and remote sensing data. 2021;2021.08.02.21261373.

Machault V, Yébakima A, Etienne M, Vignolles C, Palany P, Tourre Y, et al. Mapping entomological dengue risk levels in Martinique using high-resolution remote-sensing Environmental Data. ISPRS Int J Geo-Inf. 2014;3(4):1352.

Article  Google Scholar 

Arduino M, de Mucci B, Santos LF, de Soares LM. S. Importance of microenvironment to arbovirus vector distribution in an urban area, São Paulo, Brazil. Rev Soc Bras Med Trop [Internet]. 2020;53. http://www.scielo.br/j/rsbmt/a/bLLXZJtWNFdY3RrpJ7cWJzx/?lang=en&format=html.

Albrieu-Llinás G, Espinosa MO, Quaglia A, Abril M, Scavuzzo CM. Urban environmental clustering to assess the spatial dynamics of Aedes aegypti breeding sites. Geospatial Health [Internet]. 2018; https://www.geospatialhealth.net/index.php/gh/article/view/654.

Kache PA, Santos-Vega M, Stewart-Ibarra AM, Cook EM, Seto KC, Diuk-Wasser MA. Bridging landscape ecology and urban science to respond to the rising threat of mosquito-borne diseases. Nat Ecol Evol. 2022;6(11):1601–16.

Article  PubMed  Google Scholar 

Chen S, Whiteman A, Li A, Rapp T, Delmelle E, Chen G, et al. An operational machine learning approach to predict mosquito abundance based on socioeconomic and landscape patterns. Landsc Ecol. 2019;34(6):1295–311.

Article  Google Scholar 

Mudele O, Bayer FM, Zanandrez L, Eiras AE, Gamba P. Modeling the Temporal Population Distribution of Ae. aegypti Mosquito using Big Earth Observation Data [Internet]. arXiv; 2019. http://arxiv.org/abs/1911.08979.

Rahman MS, Ekalaksananan T, Zafar S, Poolphol P, Shipin O, Haque U, et al. Ecological, Social, and other Environmental determinants of Dengue Vector Abundance in Urban and Rural areas of Northeastern Thailand. Int J Environ Res Public Health. 2021;18(11):5971.

Article  PubMed  PubMed Central  Google Scholar 

QGIS.org, 2024. QGIS Geographic Information System. QGIS Association. [Internet]. http://www.qgis.org.

Herold M, Liu X, Clarke KC. Spatial Metrics and Image Texture for Mapping Urban Land Use. Photogramm Eng Remote Sens. 2003;69(9):991–1001.

Article  Google Scholar 

Teillet C, Pillot B, Catry T, Demagistri L, Lyszczarz D, Lang M, et al. Fast unsupervised Multi-scale characterization of Urban landscapes based on Earth Observation Data. Remote Sens. 2021;13(12):2398.

Article  Google Scholar 

Couteron P, Pelissier R, Nicolini EA, Paget D. Predicting tropical forest stand structure parameters from Fourier transform of very high-resolution remotely sensed canopy images. J Appl Ecol. 2005;42(6):1121–8.

Article  Google Scholar 

Couteron P, Barbier N, Gautier D. Textural ordination based on Fourier spectral decomposition: a method to analyze and compare landscape patterns. Landsc Ecol. 2006;21:555–67.

Article  Google Scholar 

Barbier N, Couteron P, Gastelly-Etchegorry JP, Proisy C. Linking canopy images to forest structural parameters: potential of a modeling framework. Ann Sci. 2012;69(2):305–11.

Article  Google Scholar 

Lang M, Alleaume S, Luque S, Baghdadi N, Feret JB. Landscape Structure Estimation using Fourier-Based Textural Ordination of High Resolution Airborne Optical Image. In: IGARSS 2018–2018 IEEE International Geoscience and Remote Sensing Symposium [Internet]. Valencia: IEEE; 2018. pp. 6600–3. https://ieeexplore.ieee.org/document/8518640/.

Lang M. Caractérisation de l’hétérogénéité spatiale de milieux naturels à parti

Comments (0)

No login
gif