De Los Santos MJ, Apter S, Coticchio G, Debrock S, Lundin K, Plancha CE, et al. Revised guidelines for good practice in IVF laboratories (2015). Hum Reprod. 2016;31:685–6.
Kemper JM, Liu Y, Afnan M, Mol BWJ, Morbeck DE. What happens to abnormally fertilized embryos? A scoping review Reprod Biomed Online. 2023;46:802–7. https://doi.org/10.1016/j.rbmo.2023.02.005.
Chen X, Shi S, Mao J, Zou L, Yu K. Developmental potential of abnormally fertilized oocytes and the associated clinical outcomes. Front Physiol. 2020;11:1–7.
Araki E, Itoi F, Honnma H, Asano Y, Oguri H, Nishikawa K. Correlation between the pronucleus size and the potential for human single pronucleus zygotes to develop into blastocysts: 1pn zygotes with large pronuclei can expect an embryo development to the blastocyst stage that is similar to the development of 2pn. J Assist Reprod Genet. 2018;35:817–23.
Article PubMed PubMed Central Google Scholar
Bredbacka P, Capalbo A. Healthy live birth following embryo transfer of a blastocyst of tetrapronuclear (4PN) origin : a case report. Hum Reprod. 2023;38(9):1700–4. https://doi.org/10.1093/humrep/dead151.
Yao G, Xu J, Xin Z, Niu W, Shi S, Jin H, et al. Developmental potential of clinically discarded human embryos and associated chromosomal analysis. Sci Rep. 2016;6:1–9.
Destouni A, Dimitriadou E, Masset H, Debrock S, Melotte C, Van Den Bogaert K, et al. Genome-wide haplotyping embryos developing from 0PN and 1PN zygotes increases transferrable embryos in PGT-M. Hum Reprod. 2018;33:2302–11.
CAS PubMed PubMed Central Google Scholar
Capalbo A, Treff N, Cimadomo D, Tao X, Ferrero S, Vaiarelli A, et al. Abnormally fertilized oocytes can result in healthy live births: improved genetic technologies for preimplantation genetic testing can be used to rescue viable embryos in in vitro fertilization cycles. Fertil Steril. 2017;108:1007-1015.e3. https://doi.org/10.1016/j.fertnstert.2017.08.004.
Feenan K, Herbert M. Can, “abnormally” fertilized zygotes give rise to viable embryos? Hum Fertil. 2006;9:157–69.
Marin D, Zimmerman R, Tao X, Zhan Y, Scott RT, Treff NR. Validation of a targeted next generation sequencing-based comprehensive chromosome screening platform for detection of triploidy in human blastocysts. Reprod Biomed Online. 2018;36:388–95. https://doi.org/10.1016/j.rbmo.2017.12.015.
Article CAS PubMed Google Scholar
Kratka C, Vadapalli PS, Mendola R, Garrisi J, Xu J, Treff NR, et al. Accurate detection and frequency of abnormal ploidy in the human blastocyst. F S Sci. 2023;4:27–35. https://doi.org/10.1016/j.xfss.2023.02.003.
Joergensen MW, Labouriau R, Hindkjaer J, Stougaard M, Kolevraa S, Bolund L, et al. The parental origin correlates with the karyotype of human embryos developing from tripronuclear zygotes. Clin Exp Reprod Med. 2015;42:14–21.
Article PubMed PubMed Central Google Scholar
Picchetta L, Figliuzzi M, Poli M, Zhan Y, Caroselli S, Tao X, et al. O-302 Triploid conceptions are predominantly caused by female meiosis II errors and their risk increases with advancing maternal age. Hum Reprod. 2023;38(Issue Supplement_1). https://doi.org/10.1093/humrep/dead093.366.
Mateo S, Parriego M, Boada M, Vidal F, Coroleu B, Veiga A. In vitro development and chromosome constitution of embryos derived from monopronucleated zygotes after intracytoplasmic sperm injection. Fertil Steril. 2013;99(3):897.
Grau N, Escrich L, Galiana Y, Meseguer M, García-Herrero S, Remohí J, et al. Morphokinetics as a predictor of self-correction to diploidy in tripronucleated intracytoplasmic sperm injection-derived human embryos. Fertil Steril. 2015;104:728–35.
Levy B, Sigurjonsson S, Pettersen B, Maisenbacher MK, Hall MP, Demko Z, et al. Genomic imbalance in products of conception: single-nucleotide polymorphism chromosomal microarray analysis. Obstet Gynecol. 2014;124:202–9.
Article CAS PubMed Google Scholar
Li M, Xue X, Zhang S, Li W, Zhao X, Ren W, et al. Effects of triploidy incidence on clinical outcomes for IVF-ET cycles in different ovarian stimulation protocols. Gynecol Endocrinol. 2015;31:769–73.
Caroselli S, Figliuzzi M, Picchetta L, Cogo F, Zambon P, Pergher I, et al. Improved clinical utility of preimplantation genetic testing through the integration of ploidy and common pathogenic microdeletions analyses. Hum Reprod. 2023;38:762–75.
Article CAS PubMed Google Scholar
García-Pascual CM, Navarro-Sánchez L, Navarro R, Martínez L, Jiménez J, Rodrigo L, et al. Optimized ngs approach for detection of aneu-ploidies and mosaicism in pgt-a and imbalances in pgt-sr. Genes (Basel). 2020;11:1–10.
Wickham H, Averick M, Bryan J, Chang W, McGowan L, François R, et al. Welcome to the tidyverse. J Open Source Softw. 2019;4:1686.
Signorell A. DescTools: Tools for Descriptive Statistics. R package version 0.99.57. 2024. https://github.com/AndriSignorell/DescTools/, https://andrisignorell.github.io/DescTools/. Accessed 20 Mar 2024.
Frnk E. Harrell J. Regression modeling strategies with applications to linear models, logistic and ordinal regression, and survival analysis. Springer Ser Stat. 2016. https://doi.org/10.1007/978-3-319-19425-7
Rosenbusch BE. Mechanisms giving rise to triploid zygotes during assisted reproduction. Fertil Steril. 2008;90:49–55.
Brancati F, Mingarelli R, Dallapiccola B. Recurrent triploidy of maternal origin. Eur J Hum Genet. 2003;11:972–4.
Massalska D, Bijok J, Kucińska-Chahwan A, Zimowski JG, Ozdarska K, Panek G, et al. Triploid pregnancy–clinical implications. Clin Genet. 2021;100:368–75.
Article CAS PubMed Google Scholar
Jacobs BYPA, Angell RR, Buchanan IM, Hassold TJ, Matsuyama AM, Manuel B, et al. The origin of human triploids. Ann Hum Genet. 1978;42:49–57.
Article CAS PubMed Google Scholar
Staessen C, Van SAC. The chromosomal constitution of embryos developing from abnormally fertilized oocytes after intracytoplasmic sperm injection and conventional in-vitro fertilization. Hum Reprod. 1997;12:321–7.
Article CAS PubMed Google Scholar
Popescu F, Jaslow CR, Kutteh WH. Recurrent pregnancy loss evaluation combined with 24-chromosome microarray of miscarriage tissue provides a probable or definite cause of pregnancy loss in over 90% of patients. Hum Reprod. 2018;33:579–87.
Article CAS PubMed Google Scholar
Soler A, Morales C, Mademont-Soler I, Margarit E, Borrell A, Borobio V, et al. Overview of chromosome abnormalities in first trimester miscarriages: a series of 1,011 consecutive chorionic villi sample karyotypes. Cytogenet Genome Res. 2017;152:81–9.
Article CAS PubMed Google Scholar
Tong X, Jin J, Xue Y, Fang L, Zhu H, Jiang L, et al. Clinical outcomes of frozen–thawed blastocysts from zygotes with no or one pronucleus for in vitro fertilization and intracytoplasmic sperm injection cycles. Arch Gynecol Obstet. 2023;308:1015–22. https://doi.org/10.1007/s00404-023-07118-1.
Article CAS PubMed PubMed Central Google Scholar
Zhu J, Wang C, Cao Z, Luan K, Wu Y, Yin H. Developmental competence and neonatal outcomes of nonpronuclear zygotes following single vitrified-warmed blastocyst transfers using propensity score matching analysis. Arch Gynecol Obstet. 2024;309:295–304. https://doi.org/10.1007/s00404-023-07235-x.
Article CAS PubMed Google Scholar
Apter S, Ebner T, Freour T, Guns Y, Kovacic B, Le Clef N, et al. Good practice recommendations for the use of time-lapse technology. Hum Reprod Open. 2021;2020:1–26.
Kobayashi T, Ishikawa H, Ishii K, Sato A, Nakamura N, Saito Y, et al. Time-lapse monitoring of fertilized human oocytes focused on the incidence of 0PN embryos in conventional in vitro fertilization cycles. Sci Rep. 2021;11:1–7. https://doi.org/10.1038/s41598-021-98312-1.
Basile N, Nogales MDC, Bronet F, Florensa M, Riqueiros M, Rodrigo L, et al. Increasing the probability of selecting chromosomally normal embryos by time-lapse morphokinetics analysis. Fertil Steril. 2014;101(3):699-704.e1.
Bradley CK, Traversa MV, Hobson N, Gee AJ, McArthur SJ. Clinical use of monopronucleated zygotes following blastocyst culture and preimplantation genetic screening, including verification of biparental chromosome inheritance. Reprod Biomed Online. 2017;34:567–74. https://doi.org/10.1016/j.rbmo.2017.03.013.
Comments (0)