Incidence of haploidy and triploidy in trophectoderm biopsies of blastocysts derived from normally and abnormally fertilized oocytes

De Los Santos MJ, Apter S, Coticchio G, Debrock S, Lundin K, Plancha CE, et al. Revised guidelines for good practice in IVF laboratories (2015). Hum Reprod. 2016;31:685–6.

Article  Google Scholar 

Kemper JM, Liu Y, Afnan M, Mol BWJ, Morbeck DE. What happens to abnormally fertilized embryos? A scoping review Reprod Biomed Online. 2023;46:802–7. https://doi.org/10.1016/j.rbmo.2023.02.005.

Article  PubMed  Google Scholar 

Chen X, Shi S, Mao J, Zou L, Yu K. Developmental potential of abnormally fertilized oocytes and the associated clinical outcomes. Front Physiol. 2020;11:1–7.

Article  Google Scholar 

Araki E, Itoi F, Honnma H, Asano Y, Oguri H, Nishikawa K. Correlation between the pronucleus size and the potential for human single pronucleus zygotes to develop into blastocysts: 1pn zygotes with large pronuclei can expect an embryo development to the blastocyst stage that is similar to the development of 2pn. J Assist Reprod Genet. 2018;35:817–23.

Article  PubMed  PubMed Central  Google Scholar 

Bredbacka P, Capalbo A. Healthy live birth following embryo transfer of a blastocyst of tetrapronuclear (4PN) origin : a case report. Hum Reprod. 2023;38(9):1700–4. https://doi.org/10.1093/humrep/dead151.

Article  PubMed  Google Scholar 

Yao G, Xu J, Xin Z, Niu W, Shi S, Jin H, et al. Developmental potential of clinically discarded human embryos and associated chromosomal analysis. Sci Rep. 2016;6:1–9.

Google Scholar 

Destouni A, Dimitriadou E, Masset H, Debrock S, Melotte C, Van Den Bogaert K, et al. Genome-wide haplotyping embryos developing from 0PN and 1PN zygotes increases transferrable embryos in PGT-M. Hum Reprod. 2018;33:2302–11.

CAS  PubMed  PubMed Central  Google Scholar 

Capalbo A, Treff N, Cimadomo D, Tao X, Ferrero S, Vaiarelli A, et al. Abnormally fertilized oocytes can result in healthy live births: improved genetic technologies for preimplantation genetic testing can be used to rescue viable embryos in in vitro fertilization cycles. Fertil Steril. 2017;108:1007-1015.e3. https://doi.org/10.1016/j.fertnstert.2017.08.004.

Article  PubMed  Google Scholar 

Feenan K, Herbert M. Can, “abnormally” fertilized zygotes give rise to viable embryos? Hum Fertil. 2006;9:157–69.

Article  Google Scholar 

Marin D, Zimmerman R, Tao X, Zhan Y, Scott RT, Treff NR. Validation of a targeted next generation sequencing-based comprehensive chromosome screening platform for detection of triploidy in human blastocysts. Reprod Biomed Online. 2018;36:388–95. https://doi.org/10.1016/j.rbmo.2017.12.015.

Article  CAS  PubMed  Google Scholar 

Kratka C, Vadapalli PS, Mendola R, Garrisi J, Xu J, Treff NR, et al. Accurate detection and frequency of abnormal ploidy in the human blastocyst. F S Sci. 2023;4:27–35. https://doi.org/10.1016/j.xfss.2023.02.003.

Article  PubMed  Google Scholar 

Joergensen MW, Labouriau R, Hindkjaer J, Stougaard M, Kolevraa S, Bolund L, et al. The parental origin correlates with the karyotype of human embryos developing from tripronuclear zygotes. Clin Exp Reprod Med. 2015;42:14–21.

Article  PubMed  PubMed Central  Google Scholar 

Picchetta L, Figliuzzi M, Poli M, Zhan Y, Caroselli S, Tao X, et al. O-302 Triploid conceptions are predominantly caused by female meiosis II errors and their risk increases with advancing maternal age. Hum Reprod. 2023;38(Issue Supplement_1). https://doi.org/10.1093/humrep/dead093.366.

Mateo S, Parriego M, Boada M, Vidal F, Coroleu B, Veiga A. In vitro development and chromosome constitution of embryos derived from monopronucleated zygotes after intracytoplasmic sperm injection. Fertil Steril. 2013;99(3):897.

Article  PubMed  Google Scholar 

Grau N, Escrich L, Galiana Y, Meseguer M, García-Herrero S, Remohí J, et al. Morphokinetics as a predictor of self-correction to diploidy in tripronucleated intracytoplasmic sperm injection-derived human embryos. Fertil Steril. 2015;104:728–35.

Article  PubMed  Google Scholar 

Levy B, Sigurjonsson S, Pettersen B, Maisenbacher MK, Hall MP, Demko Z, et al. Genomic imbalance in products of conception: single-nucleotide polymorphism chromosomal microarray analysis. Obstet Gynecol. 2014;124:202–9.

Article  CAS  PubMed  Google Scholar 

Li M, Xue X, Zhang S, Li W, Zhao X, Ren W, et al. Effects of triploidy incidence on clinical outcomes for IVF-ET cycles in different ovarian stimulation protocols. Gynecol Endocrinol. 2015;31:769–73.

Article  PubMed  Google Scholar 

Caroselli S, Figliuzzi M, Picchetta L, Cogo F, Zambon P, Pergher I, et al. Improved clinical utility of preimplantation genetic testing through the integration of ploidy and common pathogenic microdeletions analyses. Hum Reprod. 2023;38:762–75.

Article  CAS  PubMed  Google Scholar 

García-Pascual CM, Navarro-Sánchez L, Navarro R, Martínez L, Jiménez J, Rodrigo L, et al. Optimized ngs approach for detection of aneu-ploidies and mosaicism in pgt-a and imbalances in pgt-sr. Genes (Basel). 2020;11:1–10.

Article  Google Scholar 

Wickham H, Averick M, Bryan J, Chang W, McGowan L, François R, et al. Welcome to the tidyverse. J Open Source Softw. 2019;4:1686.

Article  Google Scholar 

Signorell A. DescTools: Tools for Descriptive Statistics. R package version 0.99.57. 2024. https://github.com/AndriSignorell/DescTools/, https://andrisignorell.github.io/DescTools/. Accessed 20 Mar 2024.

Frnk E. Harrell J. Regression modeling strategies with applications to linear models, logistic and ordinal regression, and survival analysis. Springer Ser Stat. 2016. https://doi.org/10.1007/978-3-319-19425-7

Rosenbusch BE. Mechanisms giving rise to triploid zygotes during assisted reproduction. Fertil Steril. 2008;90:49–55.

Article  PubMed  Google Scholar 

Brancati F, Mingarelli R, Dallapiccola B. Recurrent triploidy of maternal origin. Eur J Hum Genet. 2003;11:972–4.

Article  PubMed  Google Scholar 

Massalska D, Bijok J, Kucińska-Chahwan A, Zimowski JG, Ozdarska K, Panek G, et al. Triploid pregnancy–clinical implications. Clin Genet. 2021;100:368–75.

Article  CAS  PubMed  Google Scholar 

Jacobs BYPA, Angell RR, Buchanan IM, Hassold TJ, Matsuyama AM, Manuel B, et al. The origin of human triploids. Ann Hum Genet. 1978;42:49–57.

Article  CAS  PubMed  Google Scholar 

Staessen C, Van SAC. The chromosomal constitution of embryos developing from abnormally fertilized oocytes after intracytoplasmic sperm injection and conventional in-vitro fertilization. Hum Reprod. 1997;12:321–7.

Article  CAS  PubMed  Google Scholar 

Popescu F, Jaslow CR, Kutteh WH. Recurrent pregnancy loss evaluation combined with 24-chromosome microarray of miscarriage tissue provides a probable or definite cause of pregnancy loss in over 90% of patients. Hum Reprod. 2018;33:579–87.

Article  CAS  PubMed  Google Scholar 

Soler A, Morales C, Mademont-Soler I, Margarit E, Borrell A, Borobio V, et al. Overview of chromosome abnormalities in first trimester miscarriages: a series of 1,011 consecutive chorionic villi sample karyotypes. Cytogenet Genome Res. 2017;152:81–9.

Article  CAS  PubMed  Google Scholar 

Tong X, Jin J, Xue Y, Fang L, Zhu H, Jiang L, et al. Clinical outcomes of frozen–thawed blastocysts from zygotes with no or one pronucleus for in vitro fertilization and intracytoplasmic sperm injection cycles. Arch Gynecol Obstet. 2023;308:1015–22. https://doi.org/10.1007/s00404-023-07118-1.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhu J, Wang C, Cao Z, Luan K, Wu Y, Yin H. Developmental competence and neonatal outcomes of nonpronuclear zygotes following single vitrified-warmed blastocyst transfers using propensity score matching analysis. Arch Gynecol Obstet. 2024;309:295–304. https://doi.org/10.1007/s00404-023-07235-x.

Article  CAS  PubMed  Google Scholar 

Apter S, Ebner T, Freour T, Guns Y, Kovacic B, Le Clef N, et al. Good practice recommendations for the use of time-lapse technology. Hum Reprod Open. 2021;2020:1–26.

Google Scholar 

Kobayashi T, Ishikawa H, Ishii K, Sato A, Nakamura N, Saito Y, et al. Time-lapse monitoring of fertilized human oocytes focused on the incidence of 0PN embryos in conventional in vitro fertilization cycles. Sci Rep. 2021;11:1–7. https://doi.org/10.1038/s41598-021-98312-1.

Article  CAS  Google Scholar 

Basile N, Nogales MDC, Bronet F, Florensa M, Riqueiros M, Rodrigo L, et al. Increasing the probability of selecting chromosomally normal embryos by time-lapse morphokinetics analysis. Fertil Steril. 2014;101(3):699-704.e1.

Article  PubMed  Google Scholar 

Bradley CK, Traversa MV, Hobson N, Gee AJ, McArthur SJ. Clinical use of monopronucleated zygotes following blastocyst culture and preimplantation genetic screening, including verification of biparental chromosome inheritance. Reprod Biomed Online. 2017;34:567–74. https://doi.org/10.1016/j.rbmo.2017.03.013.

Article  PubMed 

Comments (0)

No login
gif