Inhibition of Human CYP1A1/A2 by a Hydroalcoholic Extract and Its Neolignan Constituents from Piper rivinoides

Androutsopoulos VP, Papakyriakou A, Vourloumis D, Spandidos DA (2011) Comparative CYP1A1 and CYP1B1 substrate and inhibitor profile of dietary flavonoids. Bioorg Med Chem 19:2842–2849. https://doi.org/10.1016/j.bmc.2011.03.042

Article  PubMed  CAS  Google Scholar 

Apers S, Vlietinck A, Pieters L (2003) Lignans and neolignans as lead compounds. Phytochem Rev 2:201–217. https://doi.org/10.1023/B:PHYT.0000045497.90158.d2

Article  CAS  Google Scholar 

Berman HM, Battistuz T, Bhat TN, Bluhm WF, Bourne PE, Burkhardt K, Feng Z, Gilliland GL, Iype L, Jain S, Fagan P, Marvin J, Padilla D, Ravichandran V, Schneider B, Thanki N, Weissig H, Westbrook JD, Zardecki C (2002) The Protein Data Bank. Acta Crystallogr D Biol Crystallogr 58:899–907. https://doi.org/10.1107/s0907444902003451

Article  PubMed  Google Scholar 

Bradford MMA (1976) Rapid and sensitive method for quantifying microgram amounts of protein using the protein-dye binding principle. Anal Biochem 72:248–254. https://doi.org/10.1006/abio.1976.9999

Article  PubMed  CAS  Google Scholar 

Chonker YS, Chandasana H, Bala V, Mukkavilli R, Kumar D, Vangalac S, Bhatta ES (2018) In vitro metabolism, CYP profile and identification of metabolites of E and Z-guggulsterone, a potent hypolipidemic agent. J Pharm Biomedic Anal 160:202–211. https://doi.org/10.1016/j.jpba.2018.06.047

Article  CAS  Google Scholar 

De-Oliveira ACAX, Fidalgo-Neto AA, Paumgartten FJR (1999) In vitro inhibition of liver monooxygenases by β-ionone, 1,8-cineole, (–)-menthol and terpineol. Toxicology 135:33–41. https://doi.org/10.1016/S0300-483X(99)00043-8

Article  PubMed  CAS  Google Scholar 

Felisberto JRS, Marques AM, Moreira DL (2021) Development and validation of an analytical method to quantify bioactive neolignans of Piper rivinoides Kunth extracts. Rev Virtual Quim 13:1165–1172. https://doi.org/10.21577/1984-6835.20210062

Article  CAS  Google Scholar 

Fonseca ACC, Queiroz LN, Felisberto JRS, Ramos YJ, Marques AM, Pontes BACC, Moreira DL, Robbs BK (2020) Cytotoxic effect of pure compounds from Piper rivinoids Kunth against oral squamous cell carcinoma. Nat Prod Res 35:6163–6167. https://doi.org/10.1080/14786419.2020.1831494

Article  PubMed  CAS  Google Scholar 

Gonzalez J, Marchand-Geneste N, Giraudel JL, Shimada T (2012) Docking and QSAR comparative studies of polycyclic aromatic hydrocarbons and other procarcinogen interactions with cytochromes P450 1A1 and 1B1. SAR QSAR Environ Res 23:87–109. https://doi.org/10.1080/1062936X.2011.636380

Article  PubMed  CAS  Google Scholar 

Gottlieb OR (1972) Chemosystematics of the Lauraceae. Phytochemistry 11:1537–1570. https://doi.org/10.1016/0031-9422(72)85001-5

Article  CAS  Google Scholar 

Jones G, Willett P, Glen RC, Leach AR, Taylor R (1997) Development and validation of a genetic algorithm for flexible docking. J Mol Biol 267:727–748. https://doi.org/10.1006/jmbi.1996.0897

Article  PubMed  CAS  Google Scholar 

Kim SJ, You J, Choi HG, Kim JH, Jee JG, Lee S (2015) Selective inhibitory effects of machilin A isolated from Machilus thunbergii on human cytochrome P450 1A and 2B6. Phytomedicine 22:615–620. https://doi.org/10.1016/j.phymed.2015.03.018

Article  PubMed  CAS  Google Scholar 

Liebeschuetz JW, Cole JC, Korb T (2012) Pose prediction and virtual screening performance of GOLD scoring functions in a standardized test. J Comput Aided Mol Des 26:737–748. https://doi.org/10.1007/s10822-012-9551-4

Article  PubMed  CAS  Google Scholar 

Lim SYM, Loo JSE, Alshagga M, Alshawsh MA, Ong EC, Pan Y (2022) In vitro and in silico studies of interactions of cathinone with human recombinant cytochrome P450 CYP(1A2), CYP2A6, CYP2B6, CYP2C8, CYP2C19, CYP2E1, CYP2J2, and CYP3A5. Toxicol Rep 9:759–768. https://doi.org/10.1016/j.toxrep.2022.03.040

Article  PubMed  PubMed Central  CAS  Google Scholar 

Longato GB, Fiorito GF, Vendramini-Costa DB, Souza IMO, Tinti SV, Ruiz ALTG, Almeida SMV, Padilha RJR, Foglio MA, Carvalho JE (2015) Different eupomatenoid-5-induced cell death responses in MCF-7 and 786-0 tumor cell lines. Toxicol Vitro 29:1026–1033. https://doi.org/10.1016/j.tiv.2015.04.002

Article  CAS  Google Scholar 

Macedo AL, Santos TCC, Valverde AL, Moreira DL, Vasconcelos TRA (2017) An overview of Piper L. Genus. Neolignans: isolation methods and biological activities. Mini-Rev Med Chem 17:693–720. https://doi.org/10.2174/1389557516666161130094826

Article  PubMed  CAS  Google Scholar 

Mcmillan DM, Tyndale RF (2018) CYP-mediated drug metabolism in the brain affects drug response. Pharmacol Ther 184:189–200. https://doi.org/10.1016/j.pharmthera.2017.10.008

Article  PubMed  CAS  Google Scholar 

Mena-Ulecia K, MacLeod-Carey D (2018) Interactions of 2-phenyl-benzotriazole xenobiotic compounds with human cytochrome P450-CYP1A1 by means of docking, molecular dynamics simulations and MM-GBSA calculations. Comput Biol Chem 74:253–262. https://doi.org/10.1016/j.compbiolchem.2018.04.004

Article  PubMed  CAS  Google Scholar 

Moreira DL, Paiva RA, Marques AM, Borges RM, Barretto ALS, Curvelo AR, Cavalcanti JF, Kaplan MA (2016) Bioactive neolignans from the leaves of Piper rivinoids Kunth (Piperaceae). Molecules 10:472–484. https://doi.org/10.3390/molecules27041151

Article  CAS  Google Scholar 

Nascimento RF, Angrisani BRP, Macedo AL, Moreira DL, Ribeiro CMR, Vasconcelos TR, Valverde AL (2020) 1H and 13 C NMR spectral data of neolignans isolated from Piper species. Curr Org Chem 24:1527–1554. https://doi.org/10.2174/1385272824999200608133542

Article  CAS  Google Scholar 

Neudert G, Klebe G (2011) DSX: a knowledge-bases scoring function assement of protein-ligant complexes. J Chem Inf Model 51:2731–2745. https://doi.org/10.1021/ci200274q

Article  PubMed  CAS  Google Scholar 

Pan Y, Tiong HK, Abd-Rashid BA, Ismail Z, Ismail R, Mak JW, Ong CE (2014) In vitro effect of important herbal active constituents on human cytochrome P450 1A2 (CYP1A2) activity. Phytomedicine 21:1645–1650. https://doi.org/10.1016/j.phymed.2014.08.003

Article  PubMed  CAS  Google Scholar 

Raunio H, Kuusisto M, Juvonen RO, Pentikainen OT (2015) Modeling of interactions between xenobiotics and cytochrome P450 (CYP) enzymes. Front Pharmacol 6:123. https://doi.org/10.3389/fphar.2015.00123

Article  PubMed  PubMed Central  CAS  Google Scholar 

Rodrigues RP, Mantoani SP, de Almeida JR, Pinsetta FR, Semighini EP, Silva VB, Silva CHP (2012) Virtual screening strategies in drug planning. Rev Virtual Quim 6:739–776. https://doi.org/10.5935/1984-6835.20120055

Article  Google Scholar 

Sansen S, Yano JK, Reynald RL, Schoch GA, Griffin KJ, Stout CD, Johnson EF (2007) Adaptations for the oxidation of polycyclic aromatic hydrocarbons exhibited by the structure of human P450 1A2. J Biol Chem 282:14348–14355. https://doi.org/10.1074/jbc.M611692200

Article  PubMed  CAS  Google Scholar 

Santes-Palacios R, Marroquín-Pérez AL, Hernández-Ojeda SL, Camacho-Carranza R, Govezensky T, Espinosa-Aguirre JJ (2020) Human CYP1A1 inhibition by flavonoids. Vitro Toxicol 62:104681. https://doi.org/10.1016/j.tiv.2019.104681

Article  CAS  Google Scholar 

Santos RO, Ramos CH, Rennó MN, dos-Santos FN Jr, Martorano LH, Valverde AL, Estrada CSD, Marques AM, De-Oliveira ACAX, Paumgartten, Moreira DL (2021) Interaction of the medicinal plant Piper rivinoides ethanolic extract, fractions, and isolated neolignans with rat CYP1A activity. Rev Bra Farmacogn 31:290–301. https://doi.org/10.1007/s43450-021-00157-2

Article  CAS  Google Scholar 

Sousa MC, Braga RC, Cintra BAS, Oliveira V, Andrade CH (2013) in silico metabolism studies of dietary flavonoids by CYP1A2 and CYP2C9. Food Res Int 50:102–110. https://doi.org/10.1016/j.foodres.2012.09.027

Article  CAS  Google Scholar 

Sridhar J, Goyal N, Liu J, Foroozesh M (2017) Review of ligand specificity factors for CYP1A subfamily enzymes from molecular modeling studies reported to date. Molecules 22:1143. https://doi.org/10.3390/molecules22071143

Article 

Comments (0)

No login
gif