The effect of caffeine chewing gum on muscle performance and fatigue after severe-intensity exercise: isometric vs. dynamic assessments in trained cyclists

Aboodarda SJ, Mira J, Floreani M, Jaswal R, Moon SJ, Amery K, Rupp T, Millet GY (2018) Effects of endurance cycling training on neuromuscular fatigue in healthy active men Part II: Corticospinal excitability and voluntary activation. Eur J Appl Physiol 118(11):2295–2305. https://doi.org/10.1007/s00421-018-3951-7

Article  PubMed  CAS  Google Scholar 

Allen DG, Lamb GD, Westerblad H (2008) Skeletal muscle fatigue: cellular mechanisms. Physiol Rev 88:287–332. https://doi.org/10.1152/physrev.00015.2007

Article  PubMed  CAS  Google Scholar 

Behrens M, Gube M, Chaabene H, Prieske O, Zenon A, Broscheid KC, Schega L, Husmann F, Weippert M (2023) Fatigue and human performance: an updated framework. Sports Med 53(1):7–31. https://doi.org/10.1007/s40279-022-01748-2

Article  PubMed  Google Scholar 

Black CD, Waddell DE, Gonglach AR (2015) Caffeine’s ergogenic effects on cycling: neuromuscular and perceptual factors. Med Sci Sports Exerc 47:1145–1158. https://doi.org/10.1249/MSS.0000000000000513

Article  PubMed  CAS  Google Scholar 

Burke LM (2008) Caffeine and sports performance. Appl Physiol Nutr Metab 33(6):1319–1334. https://doi.org/10.1139/H08-130

Article  PubMed  CAS  Google Scholar 

Couto PG, Silva-Cavalcante MD, Mezêncio B, Azevedo RA, Cruz R, Bertuzzi R, Lima-Silva AE, Kiss MAPD (2022) Effects of caffeine on central and peripheral fatigue following closed- and open-loop cycling exercises. Braz J Med Biol Res 55:e11901. https://doi.org/10.1590/1414-431X2021e11901

Article  PubMed  PubMed Central  CAS  Google Scholar 

De Pauw K, Roelands B, Cheung SS, de Geus B, Rietjens G, Meeusen R (2013) Guidelines to classify subject groups in sport-science research. Int J Sport Physiology Perform 8(2):111–122. https://doi.org/10.1123/ijspp.8.2.111

Article  Google Scholar 

Doyle-Baker D, Temesi J, Medysky ME, Holash RJ, Millet GY (2018) An innovative ergometer to measure neuromuscular fatigue immediately after cycling. Med Sci Sports Exerc 50:375–387

Article  PubMed  Google Scholar 

Felippe LC, Ferreira GA, Learsi SK, Boari D, Bertuzzi R, Lima-Silva AE (2018) Caffeine increases both total work performed above critical power and peripheral fatigue during a 4-km cycling time trial. J Appl Physiol 124:1491–1501. https://doi.org/10.1152/japplphysiol.00930.2017

Article  PubMed  CAS  Google Scholar 

Gonçalves Ribeiro B, Pontes Morales A, Sampaio-Jorge F et al (2017) Acute effects of caffeine intake on athletic performance: a systematic review and meta-analysis. Rev Chil Nutr 44:283–291

Article  Google Scholar 

Grgic J (2018) Caffeine ingestion enhances Wingate performance: a meta-analysis. Eur J Sport Sci 18:219–225

Article  PubMed  Google Scholar 

Grgic J, Pickering C (2019) The effects of caffeine ingestion on isokinetic muscular strength: A meta-analysis. J Sci Med Sport 22:353–360

Article  PubMed  Google Scholar 

Grgic J, Trexler ET, Lazinica B et al (2018) Effects of caffeine intake on muscle strength and power: a systematic review and meta-analysis. J Int Soc Sports Nutr 15:11

Article  PubMed  PubMed Central  Google Scholar 

Grgic J, Grgic I, Pickering C, Schoenfeld BJ, Bishop DJ, Pedisic Z (2020) Wake up and smell the coffee: caffeine supplementation and exercise performance-an umbrella review of 21 published meta-analyses. Br J Sports Med 54(11):681–688. https://doi.org/10.1136/bjsports-2018-100278

Article  PubMed  Google Scholar 

Harriss DJ, Atkinson G (2015) Ethical standards in sport and exercise science research: 2016 Update. Int J Sports Med 36(14):1121–1124. https://doi.org/10.1055/s-0035-1565186

Article  PubMed  CAS  Google Scholar 

Hopkins WG (2015) Spreadsheets for analisys of validity and reliability. Sportscience 19:36–42

Google Scholar 

Howley ET, JrBD B, Welch HG (1995) Criteria for maximal oxygen uptake: Review and commentary. Med Sci Sports Exerc 27(9):1292–1301

Article  PubMed  CAS  Google Scholar 

Kagaya A, Ogita F (1992) Blood flow during muscle contraction and relaxation in rhythmic exercise at different intensities. Ann Physiol Anthropol 11(3):251–256. https://doi.org/10.2114/ahs1983.11.251

Article  PubMed  CAS  Google Scholar 

Kamimori GH, Karyekar CS, Otterstetter R, Cox DS, Balkin TJ, Belenky GL, Eddington ND (2002) The rate of absorption and relative bioavailability of caffeine administered in chewing gum versus capsules to normal healthy volunteers. Int J Pharm 234(1–2):159–167. https://doi.org/10.1016/s0378-5173(01)00958-9

Article  PubMed  CAS  Google Scholar 

Krüger RL, Aboodarda SJ, Jaimes LM, MacIntosh BR, Samozino P, Millet GY (2019) Fatigue and recovery measured with dynamic properties versus isometric force: effects of exercise intensity. J Exp Biol 222(Pt 9):jeb197483. https://doi.org/10.1242/jeb.197483

Article  PubMed  Google Scholar 

Lima-Silva AE, Cristina-Souza G, Silva-Cavalcante MD, Bertuzzi R, Bishop DJ (2021) Caffeine during high-intensity whole-body exercise: an integrative approach beyond the central nervous system. Nutrients 13(8):2503. https://doi.org/10.3390/nu13082503

Article  PubMed  PubMed Central  CAS  Google Scholar 

Martin JC, Davidson CJ, Pardyjak ER (2007) Understanding sprint-cycling performance: the integration of muscle power, resistance, and modeling. Int J Sports Physiol Performe 2(1):5–21

Article  Google Scholar 

Meyer T, Lucia A, Earnest CP, Kindermann W (2005) A conceptual framework for performance diagnosis and training prescription from submaximal gas exchange parameters–theoryandapplication. Int J Sports Med 26(Suppl 1):S38-48. https://doi.org/10.1055/s-2004-830514

Article  PubMed  Google Scholar 

Mira J, Aboodarda SJ, Floreani M, Jaswal R, Moon SJ, Amery K, Rupp T, Millet GY (2018) Effects of endurance training on neuromuscular fatigue in healthy active men Part I: Strength loss and muscle fatigue. Eur J Appl Physiol 118(11):2281–2293. https://doi.org/10.1007/s00421-018-3950-8

Article  PubMed  CAS  Google Scholar 

Morris C, Viriot SM, Farooq MQUA, Morris GA, Lynn A (2019) Caffeine release and absorption from caffeinated gums. Food Funct 10(4):1792–1796. https://doi.org/10.1039/c9fo00431a

Article  PubMed  CAS  Google Scholar 

Nascimento EMF, Borszcz FK, Ventura TP, Caputo F, Guglielmo LGA, de Lucas RD (2024) Reliability and validity of cycling sprint performance at isolinear mode without torque factor: a preliminary study in well-trained male cyclists. Res Q Exerc Sport 6:1–8. https://doi.org/10.1080/02701367.2023.2298752

Article  Google Scholar 

Paton CD, Lowe T, Irvine A (2010) Caffeinated chewing gum increases repeated sprint performance and augments increases in testosterone in competitive cyclists. Eur J Appl Physiol 110(6):1243–1250. https://doi.org/10.1007/s00421-010-1620-6

Article  PubMed  CAS  Google Scholar 

Place N, Millet GY (2020) Quantification of neuromuscular fatigue: what do we do wrong and why? Sports Med 50(3):439–447. https://doi.org/10.1007/s40279-019-01203-9

Article  PubMed  Google Scholar 

Polito MD, Souza DB, Casonatto J et al (2016) Acute effect of caffeine consumption on isotonic muscular strength and endurance: a systematic review and meta-analysis. Sci Sports 31:119–128

Article  Google Scholar 

Rocha PLA, Lima ALC, Saunders B, Reis CEG (2022) Development of a caffeine content table for foods, drinks, medications and supplements typically consumed by the brazilian population. Nutrients 14(20):4417. https://doi.org/10.3390/nu14204417

Article  PubMed  PubMed Central  CAS  Google Scholar 

Ruíz-Moreno C, Lara B, Brito de Souza D, Gutiérrez-Hellín J, Romero-Moraleda B, Cuéllar-Rayo Á, Del Coso J (2020) Acute caffeine intake increases muscle oxygen saturation during a maximal incremental exercise test. Br J Clin Pharmacol 86:861–867. https://doi.org/10.1111/bcp.14189

Article  PubMed  PubMed Central  CAS 

Comments (0)

No login
gif