Metaverse in surgery — origins and future potential

Zhang, X., Chen, Y., Hu, L. & Wang, Y. The metaverse in education: definition, framework, features, potential applications, challenges, and future research topics. Front. Psychol. 13, 1016300 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Weinberger, M. What is metaverse?—a definition based on qualitative meta-synthesis. Future Internet 14, 310 (2022).

Article  Google Scholar 

Mystakidis, S. Metaverse. Encyclopedia 2, 486–497 (2022).

Article  Google Scholar 

Veneziano, D. et al. Climbing over the barriers of current imaging technology in urology. Eur. Urol. 77, 142–143 (2020).

Article  PubMed  Google Scholar 

Stephenson, N. Snow Crash (Bantam Books, 1992).

Bernardo, A. Virtual reality and simulation in neurosurgical training. World Neurosurg. 106, 1015–1029 (2017).

Article  PubMed  Google Scholar 

Checcucci, E. et al. The metaverse in urology: ready for prime time. The ESUT, ERUS, EULIS, and ESU perspective. Eur. Urol. Open. Sci. 46, 96–98 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Checcucci, E. et al. The future of robotic surgery in urology: from augmented reality to the advent of metaverse. Ther. Adv. Urol. 15, 17562872231151853 (2023).

Article  PubMed  PubMed Central  Google Scholar 

Alharbi, Y., Al-Mansour, M., Al-Saffar, R., Garman, A. & Al-Radadi, A. Three-dimensional virtual reality as an innovative teaching and learning tool for human anatomy courses in medical education: a mixed methods study. Cureus https://doi.org/10.7759/cureus.7085 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Kye, B., Han, N., Kim, E., Park, Y. & Jo, S. Educational applications of metaverse: possibilities and limitations. J. Educ. Eval. Health Prof. 18, 32 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Sutherland, I. E. A head-mounted three dimensional display. In Proc. AFIPS ‘68 757–764 (Association for Computing Machinery, 1968).

Lanier, J. Virtually there. Sci. Am. 284, 66–75 (2001).

Article  CAS  PubMed  Google Scholar 

Satava, R. M. Virtual reality surgical simulator: the first steps. Surg. Endosc. 7, 203–205 (1993).

Article  CAS  PubMed  Google Scholar 

Satava, R. M. Historical review of surgical simulation—a personal perspective. World J. Surg. 32, 141–148 (2008).

Article  PubMed  Google Scholar 

Georgiou, K. E., Georgiou, E. & Satava, R. M. 5G use in healthcare: the future is present. J. Soc. Laparoscop. Soc. 25, e2021.00064 (2021).

Google Scholar 

Amparore, D. et al. Computer vision and machine-learning techniques for automatic 3D virtual images overlapping during augmented reality guided robotic partial nephrectomy. Technol. Cancer Res. Treat. 23, 15330338241229368 (2024).

Article  PubMed  PubMed Central  Google Scholar 

Sica, M. et al. 3D model artificial intelligence-guided automatic augmented reality images during robotic partial nephrectomy. Diagnostics 13, 3454 (2023).

Article  PubMed  PubMed Central  Google Scholar 

Cheng, R., Wu, N., Chen, S. & Han, B. Will metaverse be nextG internet? Vision, hype, and reality. IEEE Netw. 36, 197–204 (2022).

Article  Google Scholar 

Jamshidi, M. B. et al. A super-efficient GSM triplexer for 5G-enabled IoT in sustainable smart grid edge computing and the metaverse. Sensors 23, 3775 (2023).

Article  PubMed  Google Scholar 

Chen, L. et al. VAST: vivify your talking avatar via zero-shot expressive facial style transfer. Preprint at https://doi.org/10.48550/arXiv.2308.04830 (2023).

Shen, K. et al. X-avatar: expressive human avatars. In 2023 IEEE/CVF Conf. on Computer Vision and Pattern Recognition (CVPR) 16911–16921 (IEEE, 2023).

Checcucci, E. et al. Metaverse surgical planning with three-dimensional virtual models for minimally invasive partial nephrectomy. Eur. Urol. 85, 320–325 (2023).

Article  PubMed  Google Scholar 

Di Dio, M. et al. Artificial intelligence-based hyper accuracy three-dimensional (HA3D®) models in surgical planning of challenging robotic nephron-sparing surgery: a case report and snapshot of the state-of-the-art with possible future implications. Diagnostics 13, 2320 (2023).

Article  PubMed  PubMed Central  Google Scholar 

Wasserthal, J. et al. TotalSegmentator: robust segmentation of 104 anatomic structures in CT images. Radiol. Artif. Intell. 5, e230024 (2023).

Article  PubMed  PubMed Central  Google Scholar 

Peroni, L. & Gorinsky, S. An end-to-end pipeline perspective on video streaming in best-effort networks: a survey and tutorial. Preprint at https://doi.org/10.48550/arXiv.2403.05192 (2024).

Truong, V. T. & Le, L. B. MetaCIDS: privacy-preserving collaborative intrusion detection for metaverse based on blockchain and online federated learning. IEEE Open. J. Comput. Soc. 4, 253–266 (2023).

Article  Google Scholar 

Nkoro, E. C., Nwakanma, C. I., Lee, J.-M. & Kim, D.-S. Detecting cyberthreats in metaverse learning platforms using an explainable DNN. Internet Things 25, 101046 (2024).

Article  Google Scholar 

Checcucci, E. et al. Visual extended reality tools in image-guided surgery in urology: a systematic review. Eur. J. Nucl. Med. Mol. Imaging 51, 1–26 (2024).

Article  Google Scholar 

Shirk, J. D. et al. Effect of 3-dimensional virtual reality models for surgical planning of robotic-assisted partial nephrectomy on surgical outcomes. JAMA Netw. Open. 2, e1911598 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Bianchi, L. et al. 3D renal model for surgical planning of partial nephrectomy: a way to improve surgical outcomes. Front. Oncol. 12, 1046505 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Shiozaki, K. et al. Clinical application of virtual imaging guided robot-assisted partial nephrectomy. J. Med. Invest. 69, 237–243 (2022).

Article  PubMed  Google Scholar 

Porpiglia, F. et al. Three-dimensional augmented reality robot-assisted partial nephrectomy in case of complex tumours (PADUA ≥10): a new intraoperative tool overcoming the ultrasound guidance. Eur. Urol. 78, 229–238 (2020).

Article  PubMed  Google Scholar 

Hofman, J. et al. First-in-human real-time AI-assisted instrument deocclusion during augmented reality robotic surgery. Healthc. Technol. Lett. 11, 33–39 (2024).

Article  PubMed  Google Scholar 

Checcucci, E. et al. Percutaneous puncture during PCNL: new perspective for the future with virtual imaging guidance. World J. Urol. 40, 639–650 (2022).

Article  CAS  PubMed  Google Scholar 

Porpiglia, F. et al. Percutaneous kidney puncture with three-dimensional mixed-reality hologram guidance: from preoperative planning to intraoperative navigation. Eur. Urol. 81, 588–597 (2022).

Article  PubMed  Google Scholar 

Porpiglia, F. et al. Three-dimensional elastic augmented-reality robot-assisted radical prostatectomy using hyperaccuracy three-dimensional reconstruction technology: a step further in the identification of capsular involvement. Eur. Urol. 76, 505–514 (2019).

Article  PubMed  Google Scholar 

Autorino, R. et al. Precision surgery and genitourinary cancers. Eur. J. Surg. Oncol. 43, 893–908 (2017).

Article  CAS  PubMed  Google Scholar 

Amparore, D. et al. Three-dimensional imaging reconstruction of the kidney’s anatomy for a tailored minimally invasive partial nephrectomy: a pilot study. Asian J. Urol. 9, 263–271 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Amparore, D. et al. 3D imaging technologies in minimally invasive kidney and prostate cancer surgery: which is the urologists’ perception? Minerva Urol. Nephrol. 74, 178–185 (2022).

Article  PubMed  Google Scholar 

Lin, C. et al. When to introduce three-dimensional visualization technology into surgical residency: a randomized controlled trial. J. Med. Syst. 43, 71 (2019).

Article 

Comments (0)

No login
gif