Predictive Factors of Apparent Treatment Resistant Hypertension Among Patients With Hypertension Identified Using Electronic Health Records

Carey RM, Calhoun DA, Bakris GL, et al. Resistant hypertension: Detection, evaluation, and management: A scientific statement from the American Heart Association. Hypertension. 2018;72(5):e53-e90. https://doi.org/10.1161/HYP.0000000000000084.

Article  CAS  PubMed  Google Scholar 

Achelrod D, Wenzel U, Frey S. Systematic review and meta-analysis of the prevalence of resistant hypertension in treated hypertensive populations. Am J Hypertens. 2015;28(3):355-361. https://doi.org/10.1093/ajh/hpu151.

Article  PubMed  Google Scholar 

Daugherty SL, Powers JD, Magid DJ, et al. Incidence and prognosis of resistant hypertension in hypertensive patients. Circulation. 2012;125(13):1635-1642. https://doi.org/10.1161/CIRCULATIONAHA.111.068064.

Article  PubMed  PubMed Central  Google Scholar 

Irvin MR, Booth JN 3rd, Shimbo D, et al. Apparent treatment-resistant hypertension and risk for stroke, coronary heart disease, and all-cause mortality. J Am Soc Hypertens. 2014;8(6):405-413. https://doi.org/10.1016/j.jash.2014.03.003.

Article  PubMed  PubMed Central  Google Scholar 

Sim JJ, Bhandari SK, Shi J, et al. Comparative risk of renal, cardiovascular, and mortality outcomes in controlled, uncontrolled resistant, and nonresistant hypertension. Kidney Int. 2015;88(3):622-632. https://doi.org/10.1038/ki.2015.142.

Article  PubMed  PubMed Central  Google Scholar 

Tsioufis C, Kasiakogias A, Kordalis A, et al. Dynamic resistant hypertension patterns as predictors of cardiovascular morbidity: a 4-year prospective study. J Hypertens. 2014;32(2):415-422. https://doi.org/10.1097/HJH.0000000000000023.

Article  CAS  PubMed  Google Scholar 

Chia YC, Ching SM. Prevalence and predictors of resistant hypertension in a primary care setting: a cross-sectional study. BMC Fam Pract. 2014;15:131. Published 2014 Jul 5. https://doi.org/10.1186/1471-2296-15-131.

Article  PubMed  PubMed Central  Google Scholar 

Haddadin F, Sud K, Munoz Estrella A, et al. The prevalence and predictors of resistant hypertension in high-risk overweight and obese patients: A cross-sectional study based on the 2017 ACC/AHA guidelines. J Clin Hypertens (Greenwich). 2019;21(10):1507-1515. https://doi.org/10.1111/jch.13666.

Article  PubMed  PubMed Central  Google Scholar 

Smith SM, Gong Y, Handberg E, et al. Predictors and outcomes of resistant hypertension among patients with coronary artery disease and hypertension. J Hypertens. 2014;32(3):635-643. https://doi.org/10.1097/HJH.0000000000000051.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bangalore S, Fayyad R, Laskey R, et al. Prevalence, predictors, and outcomes in treatment-resistant hypertension in patients with coronary disease. Am J Med. 2014;127(1):71-81.e1. https://doi.org/10.1016/j.amjmed.2013.07.038.

Article  PubMed  Google Scholar 

Kim S, Park JJ, Shin MS, et al. Apparent treatment-resistant hypertension among ambulatory hypertensive patients: a cross-sectional study from 13 general hospitals. Korean J Intern Med. 2021;36(4):888-897. https://doi.org/10.3904/kjim.2019.361.

Article  PubMed  PubMed Central  Google Scholar 

Gupta AK, Nasothimiou EG, Chang CL, et al. Baseline predictors of resistant hypertension in the Anglo-Scandinavian Cardiac Outcome Trial (ASCOT): a risk score to identify those at high-risk. J Hypertens. 2011;29(10):2004-2013. https://doi.org/10.1097/HJH.0b013e32834a8a42.

Article  CAS  PubMed  Google Scholar 

Chiu N, Lauffenburger JC, Franklin JM, Choudhry NK. Prevalence, predictors, and outcomes of both true- and pseudo-resistant hypertension in the action to control cardiovascular risk in diabetes trial: a cohort study. Hypertens Res. 2021;44(11):1471-1482. https://doi.org/10.1038/s41440-021-00739-6.

Article  CAS  PubMed  Google Scholar 

Goldstein BA, Navar AM, Pencina MJ, Ioannidis JP. Opportunities and challenges in developing risk prediction models with electronic health records data: a systematic review. J Am Med Inform Assoc. 2017;24(1):198-208. https://doi.org/10.1093/jamia/ocw042.

Article  PubMed  Google Scholar 

Nijman S, Leeuwenberg AM, Beekers I, et al. Missing data is poorly handled and reported in prediction model studies using machine learning: a literature review. J Clin Epidemiol. 2022;142:218-229. https://doi.org/10.1016/j.jclinepi.2021.11.023.

Article  PubMed  Google Scholar 

Schneeweiss S, Rassen JA, Brown JS, et al. Graphical Depiction of Longitudinal Study Designs in Health Care Databases. Ann Intern Med. 2019;170(6):398-406. https://doi.org/10.7326/M18-3079.

Article  PubMed  Google Scholar 

Peng M, Chen G, Kaplan GG, et al. Methods of defining hypertension in electronic medical records: validation against national survey data. J Public Health (Oxf). 2016;38(3):e392-e399. https://doi.org/10.1093/pubmed/fdv155.

Article  PubMed  PubMed Central  Google Scholar 

Jaffe G, Gray Z, Krishnan G, et al. Screening rates for primary aldosteronism in resistant hypertension: a cohort study. Hypertension. 2020;75(3):650-659. https://doi.org/10.1161/HYPERTENSIONAHA.119.14359.

Article  CAS  PubMed  Google Scholar 

Grundy SM, Stone NJ, Bailey AL, et al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA Guideline on the Management of Blood Cholesterol: Executive Summary: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines [published correction appears in Circulation. 2019;139(25):e1178-e1181]. Circulation. 2019;139(25):e1046-e1081. https://doi.org/10.1161/CIR.0000000000000624.

Article  PubMed  Google Scholar 

Kerner W, Brückel J; German Diabetes Association. Definition, classification and diagnosis of diabetes mellitus. Exp Clin Endocrinol Diabetes. 2014;122(7):384-386. https://doi.org/10.1055/s-0034-1366278.

Article  CAS  PubMed  Google Scholar 

Klompas M, Eggleston E, McVetta J, Lazarus R, Li L, Platt R. Automated detection and classification of type 1 versus type 2 diabetes using electronic health record data. Diabetes Care. 2013;36(4):914-921. https://doi.org/10.2337/dc12-0964.

Article  PubMed  PubMed Central  Google Scholar 

Tu K, Manuel D, Lam K, Kavanagh D, Mitiku TF, Guo H. Diabetics can be identified in an electronic medical record using laboratory tests and prescriptions. J Clin Epidemiol. 2011;64(4):431-435. https://doi.org/10.1016/j.jclinepi.2010.04.007.

Article  PubMed  Google Scholar 

Chi GC, Li X, Tartof SY, Slezak JM, Koebnick C, Lawrence JM. Validity of ICD-10-CM codes for determination of diabetes type for persons with youth-onset type 1 and type 2 diabetes. BMJ Open Diabetes Res Care. 2019;7(1):e000547. https://doi.org/10.1136/bmjdrc-2018-000547.

Norton JM, Ali K, Jurkovitz CT, et al. Development and validation of a pragmatic electronic phenotype for CKD. Clin J Am Soc Nephrol. 2019;14(9):1306-1314. https://doi.org/10.2215/CJN.00360119.

Beesley LJ, Bondarenko I, Elliot MR, Kurian AW, Katz SJ, Taylor JM. Multiple imputation with missing data indicators. Stat Methods Med Res. 2021;30(12):2685-2700. https://doi.org/10.1177/09622802211047346.

Article  PubMed  PubMed Central  Google Scholar 

Sperrin M, Martin GP, Sisk R, Peek N. Missing data should be handled differently for prediction than for description or causal explanation. J Clin Epidemiol. 2020;125:183-187. https://doi.org/10.1016/j.jclinepi.2020.03.028.

Article  PubMed  Google Scholar 

van Buuren S, Groothuis-Oudshoorn K. mice: Multivariate imputation by chained equations in R. Journal of Statistical Software. 2011;45(3), 1–67. https://doi.org/10.18637/jss.v045.i03.

Article  Google Scholar 

Breiman L. Random Forests. 2001. https://doi.org/10.1023/a:1010933404324.

Article  Google Scholar 

Loh W-Y. Classification and regression trees. WIREs Data Mining Knowl Discov. 2011;1:14-23. https://doi.org/10.1002/widm.8.

Article  Google Scholar 

Tibshirani R. Regression Shrinkage and Selection via the LASSO. Journal of the Royal Statistical Society. Series B (Methodological). 1996;58(1):267–288. http://www.jstor.org/stable/2346178.

Steyerberg EW, Vickers AJ, Cook NR, et al. Assessing the performance of prediction models: a framework for traditional and novel measures. Epidemiology. 2010;21(1):128-138. https://doi.org/10.1097/EDE.0b013e3181c30fb2.

Article  PubMed  PubMed Central  Google Scholar 

Marshall A, Altman DG, Holder RL, Royston P. Combining estimates of interest in prognostic modelling studies after multiple imputation: current practice and guideli

Comments (0)

No login
gif