Tirzepatide administration improves cognitive impairment in HFD mice by regulating the SIRT3-NLRP3 axis

R. Estruch, E. Ros, The role of the Mediterranean diet on weight loss and obesity-related diseases. Rev. Endocr. Metab. Disord. 21(3), 315–327 (2020). https://doi.org/10.1007/s11154-020-09579-0

Article  PubMed  Google Scholar 

M.E. Piché, A. Tchernof, J.P. Després, Obesity Phenotypes, Diabetes, and Cardiovascular Diseases. Circ. Res. 126(11), 1477–1500 (2020). https://doi.org/10.1161/circresaha.120.316101

Article  PubMed  Google Scholar 

A. Elagizi, S. Kachur, C.J. Lavie, S. Carbone, A. Pandey, F.B. Ortega et al. An Overview and Update on Obesity and the Obesity Paradox in Cardiovascular Diseases. Prog. Cardiovasc. Dis. 61(2), 142–150 (2018). https://doi.org/10.1016/j.pcad.2018.07.003

Article  PubMed  Google Scholar 

S.J. Leigh, M.J. Morris, Diet, inflammation and the gut microbiome: Mechanisms for obesity-associated cognitive impairment. Biochimica et. biophysica acta Mol. basis Dis. 1866(6), 165767 (2020). https://doi.org/10.1016/j.bbadis.2020.165767

Article  CAS  Google Scholar 

Y.Y. Syed, Tirzepatide: First Approval. Drugs 82(11), 1213–1220 (2022). https://doi.org/10.1007/s40265-022-01746-8

Article  CAS  PubMed  Google Scholar 

L. Yuan, J. Zhang, J.H. Guo, C. Holscher, J.T. Yang, M.N. Wu et al. DAla2-GIP-GLU-PAL Protects Against Cognitive Deficits and Pathology in APP/PS1 Mice by Inhibiting Neuroinflammation and Upregulating cAMP/PKA/CREB Signaling Pathways. J. Alzheimer’s. Dis.: JAD 80(2), 695–713 (2021). https://doi.org/10.3233/jad-201262

Article  CAS  PubMed  Google Scholar 

S. Nizari, M. Basalay, P. Chapman, N. Korte, A. Korsak, I.N. Christie et al. Glucagon-like peptide-1 (GLP-1) receptor activation dilates cerebral arterioles, increases cerebral blood flow, and mediates remote (pre)conditioning neuroprotection against ischaemic stroke. Basic Res. Cardiol. 116(1), 32 (2021). https://doi.org/10.1007/s00395-021-00873-9

Article  CAS  PubMed  PubMed Central  Google Scholar 

K.O. Kopp, E.J. Glotfelty, Y. Li, N.H. Greig, Glucagon-like peptide-1 (GLP-1) receptor agonists and neuroinflammation: Implications for neurodegenerative disease treatment. Pharmacol. Res. 186, 106550 (2022). https://doi.org/10.1016/j.phrs.2022.106550

Article  CAS  PubMed  PubMed Central  Google Scholar 

Y. Shan, S. Tan, Y. Lin, S. Liao, B. Zhang, X. Chen et al. The glucagon-like peptide-1 receptor agonist reduces inflammation and blood-brain barrier breakdown in an astrocyte-dependent manner in experimental stroke. J. Neuroinflamm. 16(1), 242 (2019). https://doi.org/10.1186/s12974-019-1638-6

Article  CAS  Google Scholar 

X. Yang, P. Feng, R. Ji, Y. Ren, W. Wei, C. Hölscher, Therapeutic application of GLP-1 and GIP receptor agonists in Parkinson’s disease. Expert Opin. therapeutic targets 26(5), 445–460 (2022). https://doi.org/10.1080/14728222.2022.2079492

Article  CAS  Google Scholar 

B. Hou, Y. Zhang, P. Liang, Y. He, B. Peng, W. Liu et al. Inhibition of the NLRP3-inflammasome prevents cognitive deficits in experimental autoimmune encephalomyelitis mice via the alteration of astrocyte phenotype. Cell Death Dis. 11(5), 377 (2020). https://doi.org/10.1038/s41419-020-2565-2

Article  CAS  PubMed  PubMed Central  Google Scholar 

R. Ward, W. Li, Y. Abdul, L. Jackson, G. Dong, S. Jamil et al. NLRP3 inflammasome inhibition with MCC950 improves diabetes-mediated cognitive impairment and vasoneuronal remodeling after ischemia. Pharmacol. Res. 142, 237–250 (2019). https://doi.org/10.1016/j.phrs.2019.01.035

Article  CAS  PubMed  PubMed Central  Google Scholar 

L. Wang, Z. Zhao, L. Zhao, Y. Zhao, G. Yang, C. Wang et al. Lactobacillus plantarum DP189 Reduces α-SYN Aggravation in MPTP-Induced Parkinson’s Disease Mice via Regulating Oxidative Damage, Inflammation, and Gut Microbiota Disorder. J. Agric. Food Chem. 70(4), 1163–1173 (2022). https://doi.org/10.1021/acs.jafc.1c07711

Article  CAS  PubMed  Google Scholar 

L. Chiricosta, A. Gugliandolo, E. Mazzon. SARS-CoV-2 Exacerbates Beta-Amyloid Neurotoxicity, Inflammation and Oxidative Stress in Alzheimer’s Disease Patients. Int J Mol Sci. 22(24); (2021). https://doi.org/10.3390/ijms222413603.

Y. Shen, Q. Wu, J. Shi, S. Zhou, Regulation of SIRT3 on mitochondrial functions and oxidative stress in Parkinson’s disease. Biomed. Pharmacother. 132, 110928 (2020). https://doi.org/10.1016/j.biopha.2020.110928

Article  CAS  PubMed  Google Scholar 

J.H. Park, J.D. Burgess, A.H. Faroqi, N.N. DeMeo, F.C. Fiesel, W. Springer et al. Alpha-synuclein-induced mitochondrial dysfunction is mediated via a sirtuin 3-dependent pathway. Mol. Neurodegeneration 15(1), 5 (2020). https://doi.org/10.1186/s13024-019-0349-x

Article  CAS  Google Scholar 

D. Wang, L. Cao, X. Zhou, G. Wang, Y. Ma, X. Hao et al. Mitigation of honokiol on fluoride-induced mitochondrial oxidative stress, mitochondrial dysfunction, and cognitive deficits through activating AMPK/PGC-1α/Sirt3. J. Hazard. Mater. 437, 129381 (2022). https://doi.org/10.1016/j.jhazmat.2022.129381

Article  CAS  PubMed  Google Scholar 

Q. Liu, Y.M. Sun, H. Huang, C. Chen, J. Wan, L.H. Ma et al. Sirtuin 3 protects against anesthesia/surgery-induced cognitive decline in aged mice by suppressing hippocampal neuroinflammation. J. neuroinflammation 18(1), 41 (2021). https://doi.org/10.1186/s12974-021-02089-z

Article  CAS  PubMed  PubMed Central  Google Scholar 

T. Shen, Y. Wu, X. Wang, Z. Wang, E. Li, C. Zhou et al. Activating SIRT3 in peritoneal mesothelial cells alleviates postsurgical peritoneal adhesion formation by decreasing oxidative stress and inhibiting the NLRP3 inflammasome. Exp. Mol. Med. 54(9), 1486–1501 (2022). https://doi.org/10.1038/s12276-022-00848-3

Article  CAS  PubMed  PubMed Central  Google Scholar 

A.A. Miller, S.J. Spencer, Obesity and neuroinflammation: a pathway to cognitive impairment. Brain, Behav., Immun. 42, 10–21 (2014). https://doi.org/10.1016/j.bbi.2014.04.001

Article  CAS  PubMed  Google Scholar 

J.E. Beilharz, J. Maniam, M.J. Morris, Diet-Induced Cognitive Deficits: The Role of Fat and Sugar, Potential Mechanisms and Nutritional Interventions. Nutrients 7(8), 6719–6738 (2015). https://doi.org/10.3390/nu7085307

Article  CAS  PubMed  PubMed Central  Google Scholar 

M.A. Nauck, D.A. D’Alessio, Tirzepatide, a dual GIP/GLP-1 receptor co-agonist for the treatment of type 2 diabetes with unmatched effectiveness regrading glycaemic control and body weight reduction. Cardiovascular Diabetol. 21(1), 169 (2022). https://doi.org/10.1186/s12933-022-01604-7

Article  CAS  Google Scholar 

M. Ala, S.P. Eftekhar, Weight loss breaks the bond between nonalcoholic fatty liver disease and cardiovascular diseases: A clinical and epidemiological perspective. Obes. Rev.: Off. J. Int. Assoc. Study Obes. 24(6), e13563 (2023). https://doi.org/10.1111/obr.13563

Article  CAS  Google Scholar 

Y Diz-Chaves, Z. Mastoor, C. Spuch, L.C. González-Matías, F. Mallo. Anti-Inflammatory Effects of GLP-1 Receptor Activation in the Brain in Neurodegenerative Diseases. Int J Mol. Sci. 23(17); (2022). https://doi.org/10.3390/ijms23179583

J. Zheng, Y. Xie, L. Ren, L. Qi, L. Wu, X. Pan et al. GLP-1 improves the supportive ability of astrocytes to neurons by promoting aerobic glycolysis in Alzheimer’s disease. Mol. Metab. 47, 101180 (2021). https://doi.org/10.1016/j.molmet.2021.101180

Article  CAS  PubMed  PubMed Central  Google Scholar 

M.K. Verma, R. Goel, K. Nandakumar, K.V.S. Nemmani, Effect of D-Ala(2)GIP, a stable GIP receptor agonist on MPTP-induced neuronal impairments in mice. Eur. J. Pharmacol. 804, 38–45 (2017). https://doi.org/10.1016/j.ejphar.2017.03.059

Article  CAS  PubMed  Google Scholar 

V. Kothari, Y. Luo, T. Tornabene, A.M. O’Neill, M.W. Greene, T. Geetha et al. High fat diet induces brain insulin resistance and cognitive impairment in mice. Biochimica et. biophysica acta Mol. basis Dis. 1863(2), 499–508 (2017). https://doi.org/10.1016/j.bbadis.2016.10.006

Article  CAS  Google Scholar 

P. Liu, Z.H. Wang, S.S. Kang, X. Liu, Y. Xia, C.B. Chan et al. High-fat diet-induced diabetes couples to Alzheimer’s disease through inflammation-activated C/EBPβ/AEP pathway. Mol. psychiatry 27(8), 3396–3409 (2022). https://doi.org/10.1038/s41380-022-01600-z

Article  CAS  PubMed  PubMed Central 

Comments (0)

No login
gif