H. Lim, S.S. Devesa, J.A. Sosa, D. Check, C.M. Kitahara, Trends in thyroid cancer incidence and mortality in the United States, 1974-2013. JAMA 317(13), 1338–1348 (2017). https://doi.org/10.1001/jama.2017.2719.
Article PubMed PubMed Central Google Scholar
J. Yu, Trends in the incidence of thyroid cancer among US persons from 2000 to 2019. Eur. J. Cancer Prev. 33(1), 5–10 (2024). https://doi.org/10.1097/CEJ.0000000000000827.
L. Schubert et al. “Clinico-pathological factors associated with radioiodine refractory differentiated thyroid carcinoma status,” J. Endocrinol. Invest, (2024) https://doi.org/10.1007/s40618-024-02352-z.
C. Durante et al. Long-term outcome of 444 patients with distant metastases from papillary and follicular thyroid carcinoma: benefits and limits of radioiodine therapy. J. Clin. Endocrinol. Metab. 91(8), 2892–2899 (2006). https://doi.org/10.1210/jc.2005-2838.
Article CAS PubMed Google Scholar
J. Wassermann et al. Outcomes and prognostic factors in radioiodine refractory differentiated thyroid carcinomas. Oncologist 21(1), 50–58 (2016). https://doi.org/10.1634/theoncologist.2015-0107.
Article CAS PubMed Google Scholar
M.S. Brose et al. Multikinase inhibitors for the treatment of asymptomatic radioactive iodine-refractory differentiated thyroid cancer: global noninterventional study (RIFTOS MKI). Thyroid 32(9), 1059–1068 (2022). https://doi.org/10.1089/thy.2022.0061.
Article CAS PubMed Google Scholar
Z.W. Baloch et al. Overview of the 2022 WHO classification of thyroid neoplasms. Endocr. Pathol. 33(1), 27–63 (2022). https://doi.org/10.1007/s12022-022-09707-3.
K.S. Wong et al. Papillary thyroid carcinoma with high-grade features versus poorly differentiated thyroid carcinoma: an analysis of clinicopathologic and molecular features and outcome. Thyroid 31(6), 933–940 (2021). https://doi.org/10.1089/thy.2020.0668.
Article CAS PubMed Google Scholar
B. Xu et al. Primary high-grade non-anaplastic thyroid carcinoma: a retrospective study of 364 cases. Histopathology 80(2), 322–337 (2022). https://doi.org/10.1111/his.14550.
A.M. Chindris et al. Clinical and molecular features of Hurthle cell carcinoma of the thyroid. J. Clin. Endocrinol. Metab. 100(1), 55–62 (2015). https://doi.org/10.1210/jc.2014-1634.
Article CAS PubMed Google Scholar
R.I. Haddad et al. Thyroid carcinoma, version 2.2022, NCCN clinical practice guidelines in oncology. J. Natl. Compr. Canc. Netw. 20(8), 925–951 (2022). https://doi.org/10.6004/jnccn.2022.0040.
Article CAS PubMed Google Scholar
J. Kohrle, “Selenium, iodine and iron-essential trace elements for thyroid hormone synthesis and metabolism,” Int. J. Mol. Sci. 24(4) (2023). https://doi.org/10.3390/ijms24043393.
R. Elisei et al. Follow-up of low-risk differentiated thyroid cancer patients who underwent radioiodine ablation of postsurgical thyroid remnants after either recombinant human thyrotropin or thyroid hormone withdrawal. J. Clin. Endocrinol. Metab. 94(11), 4171–4179 (2009). https://doi.org/10.1210/jc.2009-0869.
Article CAS PubMed Google Scholar
M. Klain, M. Ricard, S. Leboulleux, E. Baudin, M. Schlumberger, Radioiodine therapy for papillary and follicular thyroid carcinoma. Eur. J. Nucl. Med Mol. Imaging 29(2), S479–S485 (2002). https://doi.org/10.1007/s00259-002-0810-9.
Article CAS PubMed Google Scholar
B.R. Haugen et al. 2015 American thyroid association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American thyroid association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid 26(1), 1–133 (2016). https://doi.org/10.1089/thy.2015.0020.
Article PubMed PubMed Central Google Scholar
M.A. Walter, C.P. Turtschi, C. Schindler, P. Minnig, J. Muller-Brand, B. Muller, The dental safety profile of high-dose radioiodine therapy for thyroid cancer: long-term results of a longitudinal cohort study. J. Nucl. Med 48(10), 1620–1625 (2007). https://doi.org/10.2967/jnumed.107.042192.
R.T. Kloos, V. Duvuuri, S.M. Jhiang, K.V. Cahill, J.A. Foster, J.A. Burns, Nasolacrimal drainage system obstruction from radioactive iodine therapy for thyroid carcinoma. J. Clin. Endocrinol. Metab. 87(12), 5817–5820 (2002). https://doi.org/10.1210/jc.2002-020210.
Article CAS PubMed Google Scholar
E. Pasqual et al. Association between radioactive iodine treatment for pediatric and young adulthood differentiated thyroid cancer and risk of second primary malignancies. J. Clin. Oncol. 40(13), 1439–1449 (2022). https://doi.org/10.1200/JCO.21.01841.
Article CAS PubMed PubMed Central Google Scholar
M. Pacilio et al. “Personalized dosimetry in the context of radioiodine therapy for differentiated thyroid cancer,” Diagnostics. 12(7) (2022). https://doi.org/10.3390/diagnostics12071763.
R.M. Tuttle et al. Controversies, consensus, and collaboration in the use of (131)I therapy in differentiated thyroid Cancer: A joint statement from the American Thyroid Association, the European Association of Nuclear Medicine, the Society of Nuclear Medicine and Molecular Imaging, and the European Thyroid Association. Thyroid 29(4), 461–470 (2019). https://doi.org/10.1089/thy.2018.0597.
S.Y. Kang, J.I. Bang, K.W. Kang, H.Y. Lee, J.K. Chung, FDG PET/CT for the early prediction of RAI therapy response in patients with metastatic differentiated thyroid carcinoma. PLoS ONE 14(6), e0218416 (2019). https://doi.org/10.1371/journal.pone.0218416
Article CAS PubMed PubMed Central Google Scholar
X.Z.Y. Lin, H. He, L. Huang, S. Ding, Z. Kai, R. Lin, P. Luo, Clinical and molecular profiles of radioiodine refractory differentiated thyroid cancer. Ann. Oncol. 30(7), S1300 (2022). https://doi.org/10.1016/j.annonc.2022.07.1737
X. Yang et al. TERT promoter mutation predicts radioiodine-refractory character in distant metastatic differentiated thyroid cancer. J. Nucl. Med. 58(2), 258–265 (2017). https://doi.org/10.2967/jnumed.116.180240.
Article CAS PubMed Google Scholar
L. Boucai et al. Genomic and transcriptomic characteristics of metastatic thyroid cancers with exceptional responses to radioactive iodine therapy. Clin. Cancer Res 29(8), 1620–1630 (2023). https://doi.org/10.1158/1078-0432.CCR-22-2882.
Article CAS PubMed PubMed Central Google Scholar
F. Grunwald et al. Redifferentiation therapy with retinoic acid in follicular thyroid cancer. J. Nucl. Med 39(9), 1555–1558 (1998). https://www.ncbi.nlm.nih.gov/pubmed/9744342.
D. Simon, J. Kohrle, C. Schmutzler, K. Mainz, C. Reiners, H.D. Roher, Redifferentiation therapy of differentiated thyroid carcinoma with retinoic acid: basics and first clinical results. Exp. Clin. Endocrinol. Diab. 104(4), 13–15 (1996). https://doi.org/10.1055/s-0029-1211692
J.W. Park et al. Troglitazone, the peroxisome proliferator-activated receptor-gamma agonist, induces antiproliferation and redifferentiation in human thyroid cancer cell lines. Thyroid 15(3), 222–231 (2005). https://doi.org/10.1089/thy.2005.15.222.
Article CAS PubMed Google Scholar
J.C. Philips, C. Petite, J.P. Willi, F. Buchegger, C.A. Meier, Effect of peroxisome proliferator-activated receptor gamma agonist, rosiglitazone, on dedifferentiated thyroid cancers. Nucl. Med Commun. 25(12), 1183–1186 (2004). https://doi.org/10.1097/00006231-200412000-00005.
Article CAS PubMed Google Scholar
T.S. Plantinga et al. mTOR Inhibition promotes TTF1-dependent redifferentiation and restores iodine uptake in thyroid carcinoma cell lines. J. Clin. Endocrinol. Metab. 99(7), E1368–E1375 (2014). https://doi.org/10.1210/jc.2014-1171.
Article CAS PubMed PubMed Central Google Scholar
S. Jang et al. Novel analogs targeting histone deacetylase suppress aggressive thyroid cancer cell growth and induce re-differentiation. Cancer Gene Ther. 22(8), 410–416 (2015). https://doi.org/10.1038/cgt.2015.37.
Comments (0)