Mimura J, Ema M, Sogawa K, Fujii-Kuriyama Y (1999) Identification of a novel mechanism of regulation of Ah (dioxin) receptor function. Genes Dev 13:20–25. https://doi.org/10.1101/gad.13.1.20
Article CAS PubMed PubMed Central Google Scholar
Johnson-Restrepo B, Kannan K, Rapaport DP, Rodan BD (2005) Polybrominated diphenyl ethers and polychlorinated biphenyls in human adipose tissue from New York. Environ Sci Technol 39:5177–5182. https://doi.org/10.1021/es050399x
Article CAS PubMed Google Scholar
Hornsby PJ (1989) Steroid and xenobiotic effects on the adrenal cortex: mediation by oxidative and other mechanisms. Free Radic Biol Med 6:103–115. https://doi.org/10.1016/0891-5849(89)90163-9
Article CAS PubMed Google Scholar
Elbekai RH, El-Kadi AO (2004) Modulation of aryl hydrocarbon receptor-regulated gene expression by arsenite, cadmium, and chromium. Toxicology 202:249–269. https://doi.org/10.1016/j.tox.2004.05.009
Article CAS PubMed Google Scholar
Amara IE, Anwar-Mohamed A, Abdelhamid G, El-Kadi AO (2012) Effect of mercury on aryl hydrocarbon receptor-regulated genes in the extrahepatic tissues of C57BL/6 mice. Food Chem Toxicol 50:2325–2334. https://doi.org/10.1016/j.fct.2012.04.028
Article CAS PubMed Google Scholar
Bonefeld-Jørgensen EC, Long M, Hofmeister MV, Vinggaard AM (2007) Endocrine-disrupting potential of bisphenol A, bisphenol A dimethacrylate, 4-n-nonylphenol, and 4-n-octylphenol in vitro: new data and a brief review. Environ Health Perspect 115(Suppl 1):69–76. https://doi.org/10.1289/ehp.9368
Article PubMed PubMed Central Google Scholar
Han EH, Kim HG, Lee EJ, Jeong HG (2015) Endosulfan induces CYP1A1 expression mediated through aryl hydrocarbon receptor signal transduction by protein kinase C. Toxicol Res 31:339–345. https://doi.org/10.5487/TR.2015.31.4.339
Article CAS PubMed PubMed Central Google Scholar
Halwachs S, Wassermann L, Lindner S, Zizzadoro C, Honscha W (2013) Fungicide prochloraz and environmental pollutant dioxin induce the ABCG2 transporter in bovine mammary epithelial cells by the arylhydrocarbon receptor signaling pathway. Toxicol Sci 131:491–501. https://doi.org/10.1093/toxsci/kfs304
Article CAS PubMed Google Scholar
Korashy HM, Shayeganpour A, Brocks DR, El-Kadi AO (2007) Induction of cytochrome P450 1A1 by ketoconazole and itraconazole but not fluconazole in murine and human hepatoma cell lines. Toxicol Sci 97:32–43. https://doi.org/10.1093/toxsci/kfm012
Article CAS PubMed Google Scholar
Bestervelt LL, Pitt JA, Nolan CJ, Piper WN (1993) TCDD alters pituitary-adrenal function. II: evidence for decreased bioactivity of ACTH. Neurotoxicol Teratol 15:371–376. https://doi.org/10.1016/0892-0362(93)90053-q
Article CAS PubMed Google Scholar
DiBartolomeis MJ, Moore RW, Peterson RE, Jefcoate CR (1986) Hypercholesterolemia and the regulation of adrenal steroidogenesis in 2,3,7,8-tetrachlorodibenzo-p-dioxin-treated rats. Toxicol Appl Pharmacol 85:313–323. https://doi.org/10.1016/0041-008x(86)90338-8
Article CAS PubMed Google Scholar
Mebus CA, Piper WN (1986) Decreased rat adrenal 21-hydroxylase activity associated with decreased adrenal microsomal cytochrome P-450 after exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin. Biochem Pharmacol 35:4359–4362. https://doi.org/10.1016/0006-2952(86)90748-3
Article CAS PubMed Google Scholar
Sanderson JT (2006) The steroid hormone biosynthesis pathway as a target for endocrine-disrupting chemicals. Toxicol Sci 94:3–21. https://doi.org/10.1093/toxsci/kfl051
Article CAS PubMed Google Scholar
Foster WG, Mertineit C, Yagminas A, McMahon A, Lecavalier P (1995) The effects of hexachlorobenzene on circulating levels of adrenal steroids in the ovariectomized rat. J Biochem Toxicol 10:129–135. https://doi.org/10.1002/jbt.2570100303
Article CAS PubMed Google Scholar
Malendowicz LK, Trejter M, Rebuffat P, Ziolkowska A, Nussdorfer GG, Majchrzak M (2006) Effects of some endocrine disruptors on the secretory and proliferative activity of the regenerating rat adrenal cortex. Int J Mol Med 18:197–200 (PMID: 16786173)
Ahmad S, Sharma S, Afjal MA, Habib H, Akhter J, Goswami P, Parvez S, Akhtar M, Raisuddin S (2022) mRNA expression and protein-protein interaction (PPI) network analysis of adrenal steroidogenesis in response to exposure to phthalates in rats. Environ Toxicol Pharmacol 89:103780. https://doi.org/10.1016/j.etap.2021.103780
Article CAS PubMed Google Scholar
Lelli SM, Ceballos NR, Mazzetti MB, Aldonatti CA, Martín S, de Viale LC (2007) Hexachlorobenzene as hormonal disruptor-studies about glucocorticoids: their hepatic receptors, adrenal synthesis and plasma levels in relation to impaired gluconeogenesis. Biochem Pharmacol 73:873–879. https://doi.org/10.1016/j.bcp.2006.11.012
Article CAS PubMed Google Scholar
Chen X, Mo J, Zhang S, Li X, Huang T, Zhu Q, Wang S, Chen X, Ge RS (2019) 4-Bromodiphenyl ether causes adrenal gland dysfunction in rats during puberty. Chem Res Toxicol 32:1772–1779. https://doi.org/10.1021/acs.chemrestox.9b00123
Article CAS PubMed Google Scholar
Dungar BM, Schupbach CD, Jacobson JR, Kopf PG (2021) Adrenal corticosteroid perturbation by the endocrine disruptor BDE-47 in a human adrenocortical cell line and male rats. Endocrinology 162:bqab160. https://doi.org/10.1210/endocr/bqab160
Article CAS PubMed PubMed Central Google Scholar
Sobolewski M, Conrad K, Marvin E, Allen JL, Cory-Slechta DA (2018) Endocrine active metals, prenatal stress and enhanced neurobehavioral disruption. Horm Behav 101:36–49. https://doi.org/10.1016/j.yhbeh.2018.01.004
Article CAS PubMed PubMed Central Google Scholar
Chang LL, Wun WS, Wang PS (2012) In utero and neonate exposure to nonylphenol develops hyperadrenalism and metabolic syndrome later in life. I. first generation rats (F1). Toxicology 301:40–49. https://doi.org/10.1016/j.tox.2012.06.017
Article CAS PubMed Google Scholar
Panagiotidou E, Zerva S, Mitsiou DJ, Alexis MN, Kitraki E (2014) Perinatal exposure to low-dose bisphenol A affects the neuroendocrine stress response in rats. J Endocrinol 220:207–218. https://doi.org/10.1530/JOE-13-0416
Article CAS PubMed Google Scholar
Yaglova NV, Tsomartova DA, Yaglov VV (2017) Differences in adrenal steroid hormones production in pubertal rats exposed to low doses of endocrine disruptor DDT during prenatal and postnatal development. Biomed Khim 63:306–311. https://doi.org/10.18097/PBMC20176304306
Article CAS PubMed Google Scholar
Desaulniers D, Xiao GH, Cummings-Lorbetskie C (2013) Effects of lactational and/or in utero exposure to environmental contaminants on the glucocorticoid stress-response and DNA methylation of the glucocorticoid receptor promoter in male rats. Toxicology 308:20–33. https://doi.org/10.1016/j.tox.2013.03.006
Article CAS PubMed Google Scholar
Lan HC, Lin IW, Yang ZJ, Lin JH (2015) Low-dose bisphenol A activates Cyp11a1 gene expression and corticosterone secretion in adrenal gland via the JNK signaling pathway. Toxicol Sci 148:26–34. https://doi.org/10.1093/toxsci/kfv162
Article CAS PubMed Google Scholar
Ziolkowska A, Belloni AS, Nussdorfer GG, Nowak M, Malendowicz LK (2006) Endocrine disruptors and rat adrenocortical function: studies on freshly dispersed and cultured cells. Int J Mol Med 18:1165–1168
Murray IA, Patterson AD, Perdew GH (2014) Aryl hydrocarbon receptor ligands in cancer: friend and foe. Nat Rev Cancer 14:801–814. https://doi.org/10.1038/nrc3846
Comments (0)