Endocrine disruptors, aryl hydrocarbon receptor and cortisol secretion

Mimura J, Ema M, Sogawa K, Fujii-Kuriyama Y (1999) Identification of a novel mechanism of regulation of Ah (dioxin) receptor function. Genes Dev 13:20–25. https://doi.org/10.1101/gad.13.1.20

Article  CAS  PubMed  PubMed Central  Google Scholar 

Johnson-Restrepo B, Kannan K, Rapaport DP, Rodan BD (2005) Polybrominated diphenyl ethers and polychlorinated biphenyls in human adipose tissue from New York. Environ Sci Technol 39:5177–5182. https://doi.org/10.1021/es050399x

Article  CAS  PubMed  Google Scholar 

Hornsby PJ (1989) Steroid and xenobiotic effects on the adrenal cortex: mediation by oxidative and other mechanisms. Free Radic Biol Med 6:103–115. https://doi.org/10.1016/0891-5849(89)90163-9

Article  CAS  PubMed  Google Scholar 

Elbekai RH, El-Kadi AO (2004) Modulation of aryl hydrocarbon receptor-regulated gene expression by arsenite, cadmium, and chromium. Toxicology 202:249–269. https://doi.org/10.1016/j.tox.2004.05.009

Article  CAS  PubMed  Google Scholar 

Amara IE, Anwar-Mohamed A, Abdelhamid G, El-Kadi AO (2012) Effect of mercury on aryl hydrocarbon receptor-regulated genes in the extrahepatic tissues of C57BL/6 mice. Food Chem Toxicol 50:2325–2334. https://doi.org/10.1016/j.fct.2012.04.028

Article  CAS  PubMed  Google Scholar 

Bonefeld-Jørgensen EC, Long M, Hofmeister MV, Vinggaard AM (2007) Endocrine-disrupting potential of bisphenol A, bisphenol A dimethacrylate, 4-n-nonylphenol, and 4-n-octylphenol in vitro: new data and a brief review. Environ Health Perspect 115(Suppl 1):69–76. https://doi.org/10.1289/ehp.9368

Article  PubMed  PubMed Central  Google Scholar 

Han EH, Kim HG, Lee EJ, Jeong HG (2015) Endosulfan induces CYP1A1 expression mediated through aryl hydrocarbon receptor signal transduction by protein kinase C. Toxicol Res 31:339–345. https://doi.org/10.5487/TR.2015.31.4.339

Article  CAS  PubMed  PubMed Central  Google Scholar 

Halwachs S, Wassermann L, Lindner S, Zizzadoro C, Honscha W (2013) Fungicide prochloraz and environmental pollutant dioxin induce the ABCG2 transporter in bovine mammary epithelial cells by the arylhydrocarbon receptor signaling pathway. Toxicol Sci 131:491–501. https://doi.org/10.1093/toxsci/kfs304

Article  CAS  PubMed  Google Scholar 

Korashy HM, Shayeganpour A, Brocks DR, El-Kadi AO (2007) Induction of cytochrome P450 1A1 by ketoconazole and itraconazole but not fluconazole in murine and human hepatoma cell lines. Toxicol Sci 97:32–43. https://doi.org/10.1093/toxsci/kfm012

Article  CAS  PubMed  Google Scholar 

Bestervelt LL, Pitt JA, Nolan CJ, Piper WN (1993) TCDD alters pituitary-adrenal function. II: evidence for decreased bioactivity of ACTH. Neurotoxicol Teratol 15:371–376. https://doi.org/10.1016/0892-0362(93)90053-q

Article  CAS  PubMed  Google Scholar 

DiBartolomeis MJ, Moore RW, Peterson RE, Jefcoate CR (1986) Hypercholesterolemia and the regulation of adrenal steroidogenesis in 2,3,7,8-tetrachlorodibenzo-p-dioxin-treated rats. Toxicol Appl Pharmacol 85:313–323. https://doi.org/10.1016/0041-008x(86)90338-8

Article  CAS  PubMed  Google Scholar 

Mebus CA, Piper WN (1986) Decreased rat adrenal 21-hydroxylase activity associated with decreased adrenal microsomal cytochrome P-450 after exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin. Biochem Pharmacol 35:4359–4362. https://doi.org/10.1016/0006-2952(86)90748-3

Article  CAS  PubMed  Google Scholar 

Sanderson JT (2006) The steroid hormone biosynthesis pathway as a target for endocrine-disrupting chemicals. Toxicol Sci 94:3–21. https://doi.org/10.1093/toxsci/kfl051

Article  CAS  PubMed  Google Scholar 

Foster WG, Mertineit C, Yagminas A, McMahon A, Lecavalier P (1995) The effects of hexachlorobenzene on circulating levels of adrenal steroids in the ovariectomized rat. J Biochem Toxicol 10:129–135. https://doi.org/10.1002/jbt.2570100303

Article  CAS  PubMed  Google Scholar 

Malendowicz LK, Trejter M, Rebuffat P, Ziolkowska A, Nussdorfer GG, Majchrzak M (2006) Effects of some endocrine disruptors on the secretory and proliferative activity of the regenerating rat adrenal cortex. Int J Mol Med 18:197–200 (PMID: 16786173)

CAS  PubMed  Google Scholar 

Ahmad S, Sharma S, Afjal MA, Habib H, Akhter J, Goswami P, Parvez S, Akhtar M, Raisuddin S (2022) mRNA expression and protein-protein interaction (PPI) network analysis of adrenal steroidogenesis in response to exposure to phthalates in rats. Environ Toxicol Pharmacol 89:103780. https://doi.org/10.1016/j.etap.2021.103780

Article  CAS  PubMed  Google Scholar 

Lelli SM, Ceballos NR, Mazzetti MB, Aldonatti CA, Martín S, de Viale LC (2007) Hexachlorobenzene as hormonal disruptor-studies about glucocorticoids: their hepatic receptors, adrenal synthesis and plasma levels in relation to impaired gluconeogenesis. Biochem Pharmacol 73:873–879. https://doi.org/10.1016/j.bcp.2006.11.012

Article  CAS  PubMed  Google Scholar 

Chen X, Mo J, Zhang S, Li X, Huang T, Zhu Q, Wang S, Chen X, Ge RS (2019) 4-Bromodiphenyl ether causes adrenal gland dysfunction in rats during puberty. Chem Res Toxicol 32:1772–1779. https://doi.org/10.1021/acs.chemrestox.9b00123

Article  CAS  PubMed  Google Scholar 

Dungar BM, Schupbach CD, Jacobson JR, Kopf PG (2021) Adrenal corticosteroid perturbation by the endocrine disruptor BDE-47 in a human adrenocortical cell line and male rats. Endocrinology 162:bqab160. https://doi.org/10.1210/endocr/bqab160

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sobolewski M, Conrad K, Marvin E, Allen JL, Cory-Slechta DA (2018) Endocrine active metals, prenatal stress and enhanced neurobehavioral disruption. Horm Behav 101:36–49. https://doi.org/10.1016/j.yhbeh.2018.01.004

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chang LL, Wun WS, Wang PS (2012) In utero and neonate exposure to nonylphenol develops hyperadrenalism and metabolic syndrome later in life. I. first generation rats (F1). Toxicology 301:40–49. https://doi.org/10.1016/j.tox.2012.06.017

Article  CAS  PubMed  Google Scholar 

Panagiotidou E, Zerva S, Mitsiou DJ, Alexis MN, Kitraki E (2014) Perinatal exposure to low-dose bisphenol A affects the neuroendocrine stress response in rats. J Endocrinol 220:207–218. https://doi.org/10.1530/JOE-13-0416

Article  CAS  PubMed  Google Scholar 

Yaglova NV, Tsomartova DA, Yaglov VV (2017) Differences in adrenal steroid hormones production in pubertal rats exposed to low doses of endocrine disruptor DDT during prenatal and postnatal development. Biomed Khim 63:306–311. https://doi.org/10.18097/PBMC20176304306

Article  CAS  PubMed  Google Scholar 

Desaulniers D, Xiao GH, Cummings-Lorbetskie C (2013) Effects of lactational and/or in utero exposure to environmental contaminants on the glucocorticoid stress-response and DNA methylation of the glucocorticoid receptor promoter in male rats. Toxicology 308:20–33. https://doi.org/10.1016/j.tox.2013.03.006

Article  CAS  PubMed  Google Scholar 

Lan HC, Lin IW, Yang ZJ, Lin JH (2015) Low-dose bisphenol A activates Cyp11a1 gene expression and corticosterone secretion in adrenal gland via the JNK signaling pathway. Toxicol Sci 148:26–34. https://doi.org/10.1093/toxsci/kfv162

Article  CAS  PubMed  Google Scholar 

Ziolkowska A, Belloni AS, Nussdorfer GG, Nowak M, Malendowicz LK (2006) Endocrine disruptors and rat adrenocortical function: studies on freshly dispersed and cultured cells. Int J Mol Med 18:1165–1168

CAS  PubMed  Google Scholar 

Murray IA, Patterson AD, Perdew GH (2014) Aryl hydrocarbon receptor ligands in cancer: friend and foe. Nat Rev Cancer 14:801–814. https://doi.org/10.1038/nrc3846

Article  CAS 

Comments (0)

No login
gif