An efficient gene targeting system using Δku80 and functional analysis of Cyp51A in Trichophyton rubrum

Andrew SWG, Melo N, Martel MC, Parker EJ, Nes DW, Kelly LS, Kelly ED (2010) Expression, purification, and characterization of Aspergillus fumigatus sterol 14-α demethylase (CYP51) isoenzymes A and B. Antimicrob Agents Chemother 54:4225–4234. https://doi.org/10.1128/aac.00316-10

Article  Google Scholar 

Bat-Ochir C, Kwak J-Y, Koh S-K, Jeon M-H, Chung D, Lee Y-W, Chae S-K (2016) The signal peptide peptidase SppA is involved in sterol regulatory element-binding protein cleavage and hypoxia adaptation in Aspergillus nidulans. Mol Microbiol 100:635–655. https://doi.org/10.1111/mmi.13341

Article  PubMed  Google Scholar 

Breslow DK, Cameron DM, Collins SR, Schuldiner M, Stewart-Ornstein J, Newman HW, Braun S, Madhani HD, Krogan NJ, Weissman JS (2008) A comprehensive strategy enabling high-resolution functional analysis of the yeast genome. Nat Methods 5:711–718. https://doi.org/10.1038/nmeth.1234

Article  PubMed  PubMed Central  Google Scholar 

Burstein VL, Beccacece I, Guasconi L, Mena CJ, Cervi L, Chiapello LS (2020) Skin immunity to dermatophytes: from experimental infection models to human disease. Front Immunol 11:605644. https://doi.org/10.3389/fimmu.2020.605644

Article  PubMed  PubMed Central  Google Scholar 

Cao X, Xu X, Dong J, Xue Y, Sun L, Zhu Y, Liu T, Jin Q (2022) Genome-wide identification and functional analysis of circRNAs in Trichophyton rubrum conidial and mycelial stages. BMC Genomics 23:21. https://doi.org/10.1186/s12864-021-08184-y

Article  PubMed  PubMed Central  Google Scholar 

Celia-Sanchez BN, Mangum B, Brewer M, Momany M (2022) Analysis of Cyp51 protein sequences shows 4 major Cyp51 gene family groups across fungi. G3 Genes Genomes Genetics 12:249. https://doi.org/10.1093/g3journal/jkac249

Article  Google Scholar 

Dhingra S, Kowalski CH, Thammahong A, Beattie SR, Bultman KM, Cramer RA (2016) RbdB, a rhomboid protease critical for SREBP activation and virulence in Aspergillus fumigatus. mSphere. https://doi.org/10.1128/msphere.00035-16

Article  PubMed  PubMed Central  Google Scholar 

Diao Y, Zhao R, Deng X, Leng W, Peng J, Jin Q (2009) Transcriptional profiles of Trichophyton rubrum in response to itraconazole. Med Mycol 47:237–247. https://doi.org/10.1080/13693780802227308

Article  PubMed  Google Scholar 

Galvão-Rocha FM, Rocha CHL, Martins MP, Sanches PR, Bitencourt TA, Sachs MS, Martinez-Rossi NM, Rossi A (2023) The antidepressant sertraline affects cell signaling and metabolism in Trichophyton rubrum. J Fungi. https://doi.org/10.3390/jof9020275

Article  Google Scholar 

Gsaller F, Hortschansky P, Furukawa T, Carr PD, Rash B, Capilla J, Müller C, Bracher F, Bowyer P, Haas H, Brakhage AA, Bromley MJ (2016) Sterol biosynthesis and azole tolerance Is governed by the opposing actions of SrbA and the CCAAT binding complex. PLoS Pathog 12:e1005775

Article  PubMed  PubMed Central  Google Scholar 

Hagiwara D, Watanabe A, Kamei K (2016) Sensitisation of an azole-resistant Aspergillus fumigatus strain containing the Cyp51A-related mutation by deleting the SrbA gene. Sci Rep 6:38833. https://doi.org/10.1038/srep38833

Article  PubMed  PubMed Central  Google Scholar 

Havlickova B, Czaika VA, Friedrich M (2008) Epidemiological trends in skin mycoses worldwide. Mycoses 51:2–15. https://doi.org/10.1111/j.1439-0507.2008.01606.x

Article  PubMed  Google Scholar 

Henry WK, Nickels TJ, Edlind DT (2000) Upregulation of ERG genes in Candida species by azoles and other sterol biosynthesis Inhibitors. Antimicrob Agents Chemother 44:2693–2700. https://doi.org/10.1128/aac.44.10.2693-2700.2000

Article  PubMed  PubMed Central  Google Scholar 

Hu W, Sillaots S, Lemieux S, Davison J, Kauffman S, Breton A, Linteau A, Xin C, Bowman J, Becker J, Jiang B, Roemer T (2007) Essential gene identification and drug target prioritization in Aspergillus fumigatus. PLoS Pathog 3:e24

Article  PubMed  PubMed Central  Google Scholar 

Ishii M, Matsumoto Y, Yamada T, Uga H, Katada T, Ohata S (2023) TrCla4 promotes actin polymerization at the hyphal tip and mycelial growth in Trichophyton rubrum. Microbiol Spectr. https://doi.org/10.1128/spectrum.02923-23

Article  PubMed  PubMed Central  Google Scholar 

Ishii M, Matsumoto Y, Yamada T, Uga H, Katada T, Ohata S (2024a) Targeting dermatophyte Cdc42 and Rac GTPase signaling to hinder hyphal elongation and virulence. iScience 27:110139. https://doi.org/10.1016/j.isci.2024.110139

Article  PubMed  PubMed Central  Google Scholar 

Ishii M, Yamada T, Ishikawa K, Ichinose K, Monod M, Ohata S (2024b) The Ptk2-Pma1 pathway enhances tolerance to terbinafine in Trichophyton rubrum. Antimicrob Agents Chemother 68:e01609-e1623. https://doi.org/10.1128/aac.01609-23

Article  PubMed  PubMed Central  Google Scholar 

Jacob TR, Peres NTA, Persinoti GF, Silva LG, Mazucato M, Rossi A, Martinez-Rossi NM (2012) rpb2 is a reliable reference gene for quantitative gene expression analysis in the dermatophyte Trichophyton rubrum. Med Mycol 50:368–377. https://doi.org/10.3109/13693786.2011.616230

Article  PubMed  Google Scholar 

Kalb VF, Woods CW, Turi TG, Dey CR, Sutter TR, Loper JC (1987) Primary structure of the P450 lanosterol demethylase gene from Saccharomyces cerevisiae. DNA 6:529–537. https://doi.org/10.1089/dna.1987.6.529

Article  PubMed  Google Scholar 

Krappmann S (2007) Gene targeting in filamentous fungi: the benefits of impaired repair. Fungal Biol Rev 21:25–29. https://doi.org/10.1016/j.fbr.2007.02.004

Article  Google Scholar 

Kühbacher A, Peiffer M, Hortschansky P, Merschak P, Bromley MJ, Haas H, Brakhage AA, Gsaller F (2022) Azole resistance-associated regulatory motifs within the promoter of cyp51A in Aspergillus fumigatus. Microbiol Spectr 10:e01209-e1222. https://doi.org/10.1128/spectrum.01209-22

Article  PubMed  PubMed Central  Google Scholar 

Lang EAS, Bitencourt TA, Peres NTA, Lopes L, Silva LG, Cazzaniga RA, Rossi A, Martinez-Rossi NM (2020) The stuA gene controls development, adaptation, stress tolerance, and virulence of the dermatophyte Trichophyton rubrum. Microbiol Res 241:126592. https://doi.org/10.1016/j.micres.2020.126592

Article  PubMed  Google Scholar 

Martinez DA, Oliver BG, Gräser Y, Goldberg JM, Li W, Martinez-Rossi NM, Monod M, Shelest E, Barton RC, Birch E, Brakhage AA, Chen Z, Gurr SJ, Heiman D, Heitman J, Kosti I, Rossi A, Saif S, Samalova M, Saunders CW, Shea T, Summerbell RC, Xu J, Young S, Zeng Q, Birren BW, Cuomo CA, White TC (2012) Comparative genome analysis of Trichophyton rubrum and related dermatophytes reveals candidate genes involved in infection. Mbio 3:e00259-e312. https://doi.org/10.1128/mBio.00259-12

Article  PubMed  PubMed Central  Google Scholar 

Martins MP, Silva LG, Rossi A, Sanches PR, Souza LDR, Martinez-Rossi NM (2019) Global analysis of cell wall genes revealed putative virulence factors in the dermatophyte Trichophyton rubrum. Front Microbiol 10:2168

Article  PubMed  PubMed Central  Google Scholar 

Matsumoto Y, Nagamachi T, Yoshikawa A, Yamazaki H, Yamasaki Y, Yamada T, Sugita T (2021) Development of an efficient gene-targeting system for elucidating infection mechanisms of the fungal pathogen Trichosporon asahii. Sci Rep 11:18270. https://doi.org/10.1038/s41598-021-97287-3

Article  PubMed  PubMed Central  Google Scholar 

Mendes NS, Bitencourt TA, Sanches PR, Silva-Rocha R, Martinez-Rossi NM, Rossi A (2018) Transcriptome-wide survey of gene expression changes and alternative splicing in Trichophyton rubrum in response to undecanoic acid. Sci Rep 8:2520. https://doi.org/10.1038/s41598-018-20738-x

Article  PubMed  PubMed Central  Google Scholar 

Monod M, Feuermann M, Salamin K, Fratti M, Makino M, Alshahni MM, Makimura K, Yamada T (2019) Trichophyton rubrum azole resistance mediated by a new ABC transporter, TruMDR3. Antimicrob Agents Chemother 63:e00863-e919. https://doi.org/10.1128/AAC

Article  PubMed  PubMed Central  Google Scholar 

Peres NTA, Lang EAS, Bitencourt TA, Oliveira VM, Fachin AL, Rossi A, Martinez-Rossi NM (2022) The bZIP Ap1 transcription factor is a negative regulator of virulence attributes of the anthropophilic dermatophyte Trichophyton rubrum. Curr Res Microb Sci 3:100132. https://doi.org/10.1016/j.crmicr.2022.100132

Article  PubMed  PubMed Central  Google Scholar 

Persinoti GF, de Aguiar Peres NT, Jacob TR, Rossi A, Vêncio RZ, Martinez-Rossi NM (2014) RNA-sequencing analysis of Trichophyton rubrum transcriptome in response to sublethal doses of acriflavine. BMC Genomics 15:S1.

Comments (0)

No login
gif