Andrew SWG, Melo N, Martel MC, Parker EJ, Nes DW, Kelly LS, Kelly ED (2010) Expression, purification, and characterization of Aspergillus fumigatus sterol 14-α demethylase (CYP51) isoenzymes A and B. Antimicrob Agents Chemother 54:4225–4234. https://doi.org/10.1128/aac.00316-10
Bat-Ochir C, Kwak J-Y, Koh S-K, Jeon M-H, Chung D, Lee Y-W, Chae S-K (2016) The signal peptide peptidase SppA is involved in sterol regulatory element-binding protein cleavage and hypoxia adaptation in Aspergillus nidulans. Mol Microbiol 100:635–655. https://doi.org/10.1111/mmi.13341
Breslow DK, Cameron DM, Collins SR, Schuldiner M, Stewart-Ornstein J, Newman HW, Braun S, Madhani HD, Krogan NJ, Weissman JS (2008) A comprehensive strategy enabling high-resolution functional analysis of the yeast genome. Nat Methods 5:711–718. https://doi.org/10.1038/nmeth.1234
Article PubMed PubMed Central Google Scholar
Burstein VL, Beccacece I, Guasconi L, Mena CJ, Cervi L, Chiapello LS (2020) Skin immunity to dermatophytes: from experimental infection models to human disease. Front Immunol 11:605644. https://doi.org/10.3389/fimmu.2020.605644
Article PubMed PubMed Central Google Scholar
Cao X, Xu X, Dong J, Xue Y, Sun L, Zhu Y, Liu T, Jin Q (2022) Genome-wide identification and functional analysis of circRNAs in Trichophyton rubrum conidial and mycelial stages. BMC Genomics 23:21. https://doi.org/10.1186/s12864-021-08184-y
Article PubMed PubMed Central Google Scholar
Celia-Sanchez BN, Mangum B, Brewer M, Momany M (2022) Analysis of Cyp51 protein sequences shows 4 major Cyp51 gene family groups across fungi. G3 Genes Genomes Genetics 12:249. https://doi.org/10.1093/g3journal/jkac249
Dhingra S, Kowalski CH, Thammahong A, Beattie SR, Bultman KM, Cramer RA (2016) RbdB, a rhomboid protease critical for SREBP activation and virulence in Aspergillus fumigatus. mSphere. https://doi.org/10.1128/msphere.00035-16
Article PubMed PubMed Central Google Scholar
Diao Y, Zhao R, Deng X, Leng W, Peng J, Jin Q (2009) Transcriptional profiles of Trichophyton rubrum in response to itraconazole. Med Mycol 47:237–247. https://doi.org/10.1080/13693780802227308
Galvão-Rocha FM, Rocha CHL, Martins MP, Sanches PR, Bitencourt TA, Sachs MS, Martinez-Rossi NM, Rossi A (2023) The antidepressant sertraline affects cell signaling and metabolism in Trichophyton rubrum. J Fungi. https://doi.org/10.3390/jof9020275
Gsaller F, Hortschansky P, Furukawa T, Carr PD, Rash B, Capilla J, Müller C, Bracher F, Bowyer P, Haas H, Brakhage AA, Bromley MJ (2016) Sterol biosynthesis and azole tolerance Is governed by the opposing actions of SrbA and the CCAAT binding complex. PLoS Pathog 12:e1005775
Article PubMed PubMed Central Google Scholar
Hagiwara D, Watanabe A, Kamei K (2016) Sensitisation of an azole-resistant Aspergillus fumigatus strain containing the Cyp51A-related mutation by deleting the SrbA gene. Sci Rep 6:38833. https://doi.org/10.1038/srep38833
Article PubMed PubMed Central Google Scholar
Havlickova B, Czaika VA, Friedrich M (2008) Epidemiological trends in skin mycoses worldwide. Mycoses 51:2–15. https://doi.org/10.1111/j.1439-0507.2008.01606.x
Henry WK, Nickels TJ, Edlind DT (2000) Upregulation of ERG genes in Candida species by azoles and other sterol biosynthesis Inhibitors. Antimicrob Agents Chemother 44:2693–2700. https://doi.org/10.1128/aac.44.10.2693-2700.2000
Article PubMed PubMed Central Google Scholar
Hu W, Sillaots S, Lemieux S, Davison J, Kauffman S, Breton A, Linteau A, Xin C, Bowman J, Becker J, Jiang B, Roemer T (2007) Essential gene identification and drug target prioritization in Aspergillus fumigatus. PLoS Pathog 3:e24
Article PubMed PubMed Central Google Scholar
Ishii M, Matsumoto Y, Yamada T, Uga H, Katada T, Ohata S (2023) TrCla4 promotes actin polymerization at the hyphal tip and mycelial growth in Trichophyton rubrum. Microbiol Spectr. https://doi.org/10.1128/spectrum.02923-23
Article PubMed PubMed Central Google Scholar
Ishii M, Matsumoto Y, Yamada T, Uga H, Katada T, Ohata S (2024a) Targeting dermatophyte Cdc42 and Rac GTPase signaling to hinder hyphal elongation and virulence. iScience 27:110139. https://doi.org/10.1016/j.isci.2024.110139
Article PubMed PubMed Central Google Scholar
Ishii M, Yamada T, Ishikawa K, Ichinose K, Monod M, Ohata S (2024b) The Ptk2-Pma1 pathway enhances tolerance to terbinafine in Trichophyton rubrum. Antimicrob Agents Chemother 68:e01609-e1623. https://doi.org/10.1128/aac.01609-23
Article PubMed PubMed Central Google Scholar
Jacob TR, Peres NTA, Persinoti GF, Silva LG, Mazucato M, Rossi A, Martinez-Rossi NM (2012) rpb2 is a reliable reference gene for quantitative gene expression analysis in the dermatophyte Trichophyton rubrum. Med Mycol 50:368–377. https://doi.org/10.3109/13693786.2011.616230
Kalb VF, Woods CW, Turi TG, Dey CR, Sutter TR, Loper JC (1987) Primary structure of the P450 lanosterol demethylase gene from Saccharomyces cerevisiae. DNA 6:529–537. https://doi.org/10.1089/dna.1987.6.529
Krappmann S (2007) Gene targeting in filamentous fungi: the benefits of impaired repair. Fungal Biol Rev 21:25–29. https://doi.org/10.1016/j.fbr.2007.02.004
Kühbacher A, Peiffer M, Hortschansky P, Merschak P, Bromley MJ, Haas H, Brakhage AA, Gsaller F (2022) Azole resistance-associated regulatory motifs within the promoter of cyp51A in Aspergillus fumigatus. Microbiol Spectr 10:e01209-e1222. https://doi.org/10.1128/spectrum.01209-22
Article PubMed PubMed Central Google Scholar
Lang EAS, Bitencourt TA, Peres NTA, Lopes L, Silva LG, Cazzaniga RA, Rossi A, Martinez-Rossi NM (2020) The stuA gene controls development, adaptation, stress tolerance, and virulence of the dermatophyte Trichophyton rubrum. Microbiol Res 241:126592. https://doi.org/10.1016/j.micres.2020.126592
Martinez DA, Oliver BG, Gräser Y, Goldberg JM, Li W, Martinez-Rossi NM, Monod M, Shelest E, Barton RC, Birch E, Brakhage AA, Chen Z, Gurr SJ, Heiman D, Heitman J, Kosti I, Rossi A, Saif S, Samalova M, Saunders CW, Shea T, Summerbell RC, Xu J, Young S, Zeng Q, Birren BW, Cuomo CA, White TC (2012) Comparative genome analysis of Trichophyton rubrum and related dermatophytes reveals candidate genes involved in infection. Mbio 3:e00259-e312. https://doi.org/10.1128/mBio.00259-12
Article PubMed PubMed Central Google Scholar
Martins MP, Silva LG, Rossi A, Sanches PR, Souza LDR, Martinez-Rossi NM (2019) Global analysis of cell wall genes revealed putative virulence factors in the dermatophyte Trichophyton rubrum. Front Microbiol 10:2168
Article PubMed PubMed Central Google Scholar
Matsumoto Y, Nagamachi T, Yoshikawa A, Yamazaki H, Yamasaki Y, Yamada T, Sugita T (2021) Development of an efficient gene-targeting system for elucidating infection mechanisms of the fungal pathogen Trichosporon asahii. Sci Rep 11:18270. https://doi.org/10.1038/s41598-021-97287-3
Article PubMed PubMed Central Google Scholar
Mendes NS, Bitencourt TA, Sanches PR, Silva-Rocha R, Martinez-Rossi NM, Rossi A (2018) Transcriptome-wide survey of gene expression changes and alternative splicing in Trichophyton rubrum in response to undecanoic acid. Sci Rep 8:2520. https://doi.org/10.1038/s41598-018-20738-x
Article PubMed PubMed Central Google Scholar
Monod M, Feuermann M, Salamin K, Fratti M, Makino M, Alshahni MM, Makimura K, Yamada T (2019) Trichophyton rubrum azole resistance mediated by a new ABC transporter, TruMDR3. Antimicrob Agents Chemother 63:e00863-e919. https://doi.org/10.1128/AAC
Article PubMed PubMed Central Google Scholar
Peres NTA, Lang EAS, Bitencourt TA, Oliveira VM, Fachin AL, Rossi A, Martinez-Rossi NM (2022) The bZIP Ap1 transcription factor is a negative regulator of virulence attributes of the anthropophilic dermatophyte Trichophyton rubrum. Curr Res Microb Sci 3:100132. https://doi.org/10.1016/j.crmicr.2022.100132
Article PubMed PubMed Central Google Scholar
Persinoti GF, de Aguiar Peres NT, Jacob TR, Rossi A, Vêncio RZ, Martinez-Rossi NM (2014) RNA-sequencing analysis of Trichophyton rubrum transcriptome in response to sublethal doses of acriflavine. BMC Genomics 15:S1.
Comments (0)