3D printing redefines microneedle fabrication for transdermal drug delivery

Ita KB. Transdermal drug delivery: Progress and challenges. J Drug Deliv Sci Technol. 2014;24:245–50.

Article  Google Scholar 

Schoellhammer CM, Blankschtein D, Langer R. Skin permeabilization for transdermal drug delivery: recent advances and future prospects. Expert Opin Drug Deliv. 2014;11:393–407.

Article  Google Scholar 

Alkilani AZ, McCrudden MT, Donnelly RF. Transdermal drug delivery: innovative pharmaceutical developments based on disruption of the barrier properties of the stratum corneum. Pharmaceutics. 2015;7:438–70.

Article  Google Scholar 

Prausnitz MR, Langer R. Transdermal drug delivery. Nat Biotechnol. 2008;26:1261–8.

Article  Google Scholar 

Han T, Das DB. Potential of combined ultrasound and microneedles for enhanced transdermal drug permeation: a review. Eur J Pharm Biopharm. 2015;89:312–28.

Article  Google Scholar 

Gorzelanny C, Mess C, Schneider SW, Huck V, Brandner JM. Skin barriers in dermal drug delivery: Which barriers have to be overcome and how can we measure them? Pharmaceutics. 2020; 12.

Waghule T, Singhvi G, Dubey SK, Pandey MM, Gupta G, Singh M, Dua K. Microneedles: a smart approach and increasing potential for transdermal drug delivery system. Biomed Pharmacother. 2019;109:1249–58.

Article  Google Scholar 

Krieger KJ, Bertollo N, Dangol M, Sheridan JT, Lowery MM, O’Cearbhaill ED. Simple and customizable method for fabrication of high-aspect ratio microneedle molds using low-cost 3D printing. Microsystems Nanoengineering. 2019;5:42.

Article  Google Scholar 

Dharadhar S, Majumdar A, Dhoble S, Patravale V. Microneedles for transdermal drug delivery: a systematic review. Drug Dev Ind Pharm. 2019;45:188–201.

Article  Google Scholar 

Singh A, Yadav S. Microneedling: advances and widening horizons. Indian Dermatology Online J. 2016;7:244–54.

Article  Google Scholar 

Dabbagh SR, Sarabi MR, Rahbarghazi R, Sokullu E, Yetisen AK, Tasoglu S. 3D-printed microneedles in biomedical applications. iScience. 2021;24:102012.

Article  Google Scholar 

Wermeling DP, Banks SL, Hudson DA, Gill HS, Gupta J, Prausnitz MR, Stinchcomb AL. Microneedles permit transdermal delivery of a skin-impermeant medication to humans. Proceedings of the National Academy of Sciences. 2008; 105: 2058-63.

Hoang MT, Ita KB, Bair DA. Solid microneedles for Transdermal Delivery of Amantadine Hydrochloride and Pramipexole Dihydrochloride. Pharmaceutics. 2015;7:379–96.

Article  Google Scholar 

Shirkhanzadeh M. Microneedles coated with porous calcium phosphate ceramics: effective vehicles for transdermal delivery of solid trehalose. J Mater Science: Mater Med. 2005;16:37–45.

Google Scholar 

Cormier M, Johnson B, Ameri M, Nyam K, Libiran L, Zhang DD, Daddona P. Transdermal delivery of desmopressin using a coated microneedle array patch system. J Controlled Release. 2004;97:503–11.

Article  Google Scholar 

Park J-H, Allen MG, Prausnitz MR. Biodegradable polymer microneedles: fabrication, mechanics and transdermal drug delivery. J Controlled Release. 2005;104:51–66.

Article  Google Scholar 

Quinn HL, Bonham L, Hughes CM, Donnelly RF. Design of a dissolving microneedle platform for transdermal delivery of a fixed-dose combination of cardiovascular drugs. J Pharm Sci. 2015;104:3490–500.

Article  Google Scholar 

Gupta J, Park SS, Bondy B, Felner EI, Prausnitz MR. Infusion pressure and pain during microneedle injection into skin of human subjects. Biomaterials. 2011;32:6823–31.

Article  Google Scholar 

Mansoor I, Liu Y, Häfeli UO, Stoeber B. Arrays of hollow out-of-plane microneedles made by metal electrodeposition onto solvent cast conductive polymer structures. J Micromech Microeng. 2013;23:085011.

Article  Google Scholar 

Li Y, Zhang H, Yang R, Laffitte Y, Schmill U, Hu W, Kaddoura M, Blondeel EJM, Cui B. Fabrication of sharp silicon hollow microneedles by deep-reactive ion etching towards minimally invasive diagnostics. Microsystems Nanoengineering. 2019;5:41.

Article  Google Scholar 

Banga AK. Microporation applications for enhancing drug delivery. Expert Opin Drug Deliv. 2009;6:343–54.

Article  Google Scholar 

Amalraju D, Dawood A. Mechanical strength evaluation analysis of stainless steel and titanium locking plate for femur bone fracture. Eng Sci Technology: Int J. 2012;2:381–8.

Google Scholar 

Assad M, Lemieux N, Rivard C, Yahia LH. Comparative in vitro biocompatibility of nickel-titanium, pure nickel, pure titanium, and stainless steel: genotoxicity and atomic absorption evaluation. Biomed Mater Eng. 1999;9:1–12.

Google Scholar 

Finley J, Knabb J. Cutaneous silica granuloma. Plast Reconstr Surg. 1982;69:340–3.

Article  Google Scholar 

Ita K. Ceramic microneedles and hollow microneedles for transdermal drug delivery: two decades of research. J Drug Deliv Sci Technol. 2018;44:314–22.

Article  Google Scholar 

Prausnitz MR. Engineering microneedle patches for vaccination and drug delivery to skin. Annual Rev Chem Biomol Eng. 2017;8:177–200.

Article  Google Scholar 

Banks SL, Pinninti RR, Gill HS, Paudel KS, Crooks PA, Brogden NK, Prausnitz MR, Stinchcomb AL. Transdermal delivery of naltrexol and skin permeability lifetime after microneedle treatment in hairless guinea pigs. J Pharm Sci. 2010;99:3072–80.

Article  Google Scholar 

Nejad HR, Sadeqi A, Kiaee G, Sonkusale S. Low-cost and cleanroom-free fabrication of microneedles. Microsystems Nanoengineering. 2018;4:17073.

Article  Google Scholar 

Wilke N, Mulcahy A, Ye SR, Morrissey A. Process optimization and characterization of silicon microneedles fabricated by wet etch technology. Microelectron J. 2005;36:650–6.

Article  Google Scholar 

Indermun S, Luttge R, Choonara YE, Kumar P, du Toit LC, Modi G, Pillay V. Current advances in the fabrication of microneedles for transdermal delivery. J Controlled Release. 2014;185:130–8.

Article  Google Scholar 

Economidou SN, Pere CPP, Reid A, Uddin MJ, Windmill JFC, Lamprou DA, Douroumis D. 3D printed microneedle patches using stereolithography (SLA) for intradermal insulin delivery. Mater Sci Engineering: C. 2019;102:743–55.

Article  Google Scholar 

Choo S, Jin S, Jung J. Fabricating high-resolution and high-dimensional microneedle mold through the resolution improvement of stereolithography 3D printing. Pharmaceutics. 2022;14:766.

Article  Google Scholar 

Shin D, Hyun J. Silk fibroin microneedles fabricated by digital light processing 3D printing. J Ind Eng Chem. 2021;95:126–33.

Article  Google Scholar 

Sachan R, Nguyen AK, Lu J, Erdmann D, Zhang JY, Narayan RJ. Digital light processing-based 3D printing of polytetrafluoroethylene solid microneedle arrays. MRS Commun. 2021;11:896–901.

Article  Google Scholar 

Mathew E, Pitzanti G, Gomes Dos Santos AL, Lamprou DA. Optimization of printing parameters for digital light processing 3D printing of hollow microneedle arrays. Pharmaceutics 2021; 13.

Faraji Rad Z, Prewett PD, Davies GJ. High-resolution two-photon polymerization: the most versatile technique for the fabrication of microneedle arrays. Microsystems Nanoengineering. 2021;7:71.

Article  Google Scholar 

Cordeiro AS, Tekko IA, Jomaa MH, Vora L, McAlister E, Volpe-Zanutto F, Nethery M, Baine PT, Mitchell N, McNeill DW, Donnelly RF. Two-photon polymerisation 3D printing of microneedle array templates with versatile designs: application in the development of polymeric drug delivery systems. Pharm Res. 2020;37:174.

Article  Google Scholar 

McKee S, Lutey A, Sciancalepore C, Poli F, Selleri S, Cucinotta A. Microfabrication of Polymer microneedle arrays using two-photon polymerization. J Photochem Photobiol B. 2022;229:112424.

Article  Google Scholar 

Luzuriaga MA, Berry DR, Reagan JC, Smaldone RA, Gassensmith JJ. Biodegradable 3D printed polymer microneedles for transdermal drug delivery. Lab Chip. 2018;18:1223–30.

Article  Google Scholar 

Khosraviboroujeni A, Mirdamadian SZ, Minaiyan M, Taheri A. Preparation and characterization of 3D printed PLA microneedle arrays for prolonged transdermal drug delivery of estradiol valerate. Drug Delivery Translational Res. 2022;12:1195–208.

Article  Google Scholar 

Wu L, Park J, Kamaki Y, Kim B. Optimization of the fused deposition modeling-based fabrication process for polylactic acid microneedles. Microsystems Nanoengineering. 2021;7:58.

Article  Google Scholar 

Lu Q, Song K-Y, Feng Y, Xie J. Fabrication of suspended uniform polymer microfibers by FDM 3D printing. CIRP J Manufact Sci Technol. 2021;32:179–87.

Article  Google Scholar 

Raise3D. Raise3D premium PLA technical data sheet. 2019.

Ranamukhaarachchi SA, Schneider T, Lehnert S, Sprenger L, Campbell JR, Mansoor I, Lai JCY, Rai K, Dutz J, Häfeli UO, Stoeber B. Development and validation of an Artificial Mechanical skin model for the study of interactions between skin and Microneedles. Macromol Mater Eng. 2016;301:306–14.

Article  Google Scholar 

Tony A, Badea I, Yang C, Liu Y, Wang K, Yang S-M, Zhang W. A preliminary experimental study of polydimethylsiloxane (PDMS)-to-PDMS bonding using oxygen plasma treatment incorporating isopropyl alcohol. Polymers. 2023;15:1006.

Article  Google Scholar 

Han Y, Lu Q, Xie J, Song K-Y, Luo D. Three-dimensional printable magnetic microfibers: Development and characterization for four-dimensional printing. 3D Printing and Additive Manufacturing. 2022; (ahead of print).

Shi Y, Xing TL, Zhang HB, Yin RX, Yang SM, Wei J, Zhang WJ. Tyrosinase-doped bioink for 3D bioprinting of living skin constructs. Biomedical Mater (Bristol England). 2018;13:035008.

Article  Google Scholar 

Tony A, Badea I, Yang C, Liu Y, Wells G, Wang K, Yin R, Zhang H, Zhang W. The additive manufacturing approach to polydimethylsiloxane (PDMS) microfluidic devices: review and future directions. Polymers. 2023;15:1926.

Article  Google Scholar 

Comments (0)

No login
gif