Glycation and Glucose Variability in Subjects with Type 1 Diabetes

International Diabetes Federation. IDF Diabetes Atlas 2021, 10th ed. https://diabetesatlas.org/atlas/tenth-edition/. Cited January 20, 2024.

Sun, B., Luo, Z., and Zhou, J., Comprehensive elaboration of glycemic variability in diabetic macrovascular and microvascular complications, Cardiovasc. Diabetol., 2021, vol. 20, no. 1, p. 9. https://doi.org/10.1186/s12933-020-01200-7

Article  PubMed  PubMed Central  Google Scholar 

Mo, Y., Lu, J., and Zhou, J., Glycemic variability: Measurement, target, impact on complications of diabetes and does it really matter?, J. Diabetes Invest., 2024, vol. 15, no. 1, pp. 5–14. https://doi.org/10.1111/jdi.14112

Article  Google Scholar 

Saik, O.V. and Klimontov, V.V., Bioinformatic reconstruction and analysis of gene networks related to glucose variability in diabetes and its complications, Int. J. Mol. Sci., 2020, vol. 21, no. 22, p. 8691. https://doi.org/10.3390/ijms21228691

Article  CAS  PubMed  PubMed Central  Google Scholar 

Klimontov, V.V., Saik, O.V., and Korbut, A.I., Glucose variability: How does it work?, Int. J. Mol. Sci., 2021, vol. 22, no. 15, p. 7783. https://doi.org/10.3390/ijms22157783

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee, J., Yun, J.S., and Ko, S.H., Advanced glycation end products and their effect on vascular complications in type 2 diabetes mellitus, Nutrients, 2022, vol. 14, no. 15, p. 3086. https://doi.org/10.3390/nu14153086

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mao, L., Yin, R., Yang, L., and Zhao, D., Role of advanced glycation end products on vascular smooth muscle cells under diabetic atherosclerosis, Front. Endocrinol. (Lausanne), 2022, vol. 13, p. 983723. https://doi.org/10.3389/fendo.2022.983723

Article  Google Scholar 

Liu, J., Pan, S., Wang, X., Liu, Z., and Zhang, Y., Role of advanced glycation end products in diabetic vascular injury: Molecular mechanisms and therapeutic perspectives, Eur. J. Med. Res., 2023, vol. 28, no. 1, p. 553. https://doi.org/10.1186/s40001-023-01431-w

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jaisson, S., Souchon, P.F., Desmons, A., Salmon, A.S., Delemer, B., and Gillery, P., Early formation of serum advanced glycation end-products in children with type 1 diabetes mellitus: relationship with glycemic control, J. Pediatr. (N. Y., NY, U. S.), 2016, vol. 172, pp. 56–62. https://doi.org/10.1016/j.jpeds.2016.01.066

Article  CAS  Google Scholar 

Heidari, F., Rabizadeh, S., Rajab, A., Heidari, F., Mouodi, M., Mirmiranpour, H., Esteghamati, A., and Nakhjavani, M., Advanced glycation end-products and advanced oxidation protein products levels are correlates of duration of type 2 diabetes, Life Sci., 2020, vol. 260, p. 118422. https://doi.org/10.1016/j.lfs.2020.118422

Article  CAS  PubMed  Google Scholar 

Battelino, T., Alexander, C.M., Amiel, S.A., Arreaza-Rubin, G., Beck, R.W., Bergenstal, R.M., Buckingham, B.A., Carroll, J., Ceriello, A., Chow, E., Choudhary, P., Close, K., Danne, T., Dutta, S., Gabbay, R., Garg, S., Heverly, J., Hirsch, I.B., Kader, T., Kenney, J., Kovatchev, B., Laffel, L., Maahs, D., Mathieu, C., Mauricio, D., Nimri, R., Nishimura, R., Scharf, M., Del Prato, S., Renard, E., Rosenstock, J., Saboo, B., Ueki, K., Umpierrez, G.E., Weinzimer, S.A., and Phillip, M., Continuous glucose monitoring and metrics for clinical trials: an international consensus statement, Lancet Diabetes Endocrinol., 2023, vol. 11, no. 1, pp. 42–57. https://doi.org/10.1016/S2213-8587(22)00319-9

Article  CAS  PubMed  Google Scholar 

Danne, T., Nimri, R., Battelino, T., Bergenstal, R.M., Close, K.L., DeVries, J.H., Garg, S., Heinemann, L., Hirsch, I., Amiel, S.A., Beck, R., Bosi, E., Buckingham, B., Cobelli, C., Dassau, E., Doyle F.J., 3rd, Heller, S., Hovorka, R., Jia, W., Jones, T., Kordonouri, O., Kovatchev, B., Kowalski, A., Laffel, L., Maahs, D., Murphy, H.R., Nørgaard, K., Parkin, C.G., Renard, E., Saboo, B., Scharf, M., Tamborlane, W.V., Weinzimer, S.A., and Phillip, M., International consensus on use of continuous glucose monitoring, Diabetes Care, 2017, vol. 40, pp. 1631–1640. https://doi.org/10.2337/dc17-1600

Article  PubMed  PubMed Central  Google Scholar 

Battelino, T., Danne, T., Bergenstal, R.M., Amiel, S.A., Beck, R., Biester, T., Bosi, E., Buckingham, B.A., Cefalu, W.T., Close, K.L., Cobelli, C., Dassau, E., DeVries, J.H., Donaghue, K.C., Dovc, K., Doyle F.J., 3rd, Garg, S., Grunberger, G., Heller, S., Heinemann, L., Hirsch, I.B., Hovorka, R., Jia, W., Kordonouri, O., Kovatchev, B., Kowalski, A., Laffel, L., Levine, B., Mayorov, A., Mathieu, C., Murphy, H.R., Nimri, R., Nørgaard, K., Parkin, C.G., Renard, E., Rodbard, D., Saboo, B., Schatz, D., Stoner, K., Urakami, T., Weinzimer, S.A., and Phillip, M., Clinical targets for continuous glucose monitoring data interpretation: recommendations from the international consensus on time in range, Diabetes Care, 2019, vol. 42, pp. 1593–1603. https://doi.org/10.2337/dci19-0028

Article  PubMed  PubMed Central  Google Scholar 

Hill, N.R., Oliver, N.S., Choudhary, P., Levy, J.C., Hindmarsh, P., and Matthews, D.R., Normal reference range for mean tissue glucose and glycemic variability derived from continuous glucose monitoring for subjects without diabetes in different ethnic groups, Diabetes Technol. Ther., 2011, vol. 13, pp. 921–928. https://doi.org/10.1089/dia.2010.0247

Article  PubMed  PubMed Central  Google Scholar 

Umpierrez, G.E. and Kovatchev, B., Glycemic variability: How to measure and its clinical implication for type 2 diabetes, Am. J. Med. Sci., 2018, vol. 356, no. 6, pp. 518–527. https://doi.org/10.1016/j.amjms.2018.09.010

Article  PubMed  PubMed Central  Google Scholar 

Sun, B., Luo, Z., and Zhou, J., Comprehensive elaboration of glycemic variability in diabetic macrovascular and microvascular complications, Cardiovasc. Diabetol., 2021, vol. 20, no. 1, p. 9. https://doi.org/10.1186/s12933-020-01200-7

Article  PubMed  PubMed Central  Google Scholar 

Roohk, H.V. and Zaidi, A.R., A review of glycated albumin as an intermediate glycation index for controlling diabetes, J. Diabetes Sci. Technol., 2008, vol. 2, no. 6, pp. 1114–1121. https://doi.org/10.1177/193229680800200620

Article  PubMed  PubMed Central  Google Scholar 

Bomholt, T., Adrian, T., Nørgaard, K., Ranjan, A.G., Almdal, T., Larsson, A., Vadstrup, M., Rix, M., Feldt-Rasmussen, B, and Hornum, M., The use of HbA1c, glycated albumin and continuous glucose monitoring to assess glucose control in the chronic kidney disease population including dialysis, Nephron, 2021, vol. 145, no. 1, pp. 14–19. https://doi.org/10.1159/000511614

Article  CAS  PubMed  Google Scholar 

Seok, H., Huh, J.H., Kim, H.M., Lee, B.W., Kang, E.S., Lee, H.C., and Cha, B.S., 1,5-Anhydroglucitol as a useful marker for assessing short-term glycemic excursions in type 1 diabetes, Diabetes Metab. J., 2015, vol. 39, no. 2, pp. 164–170. https://doi.org/10.4093/dmj.2015.39.2.164

Article  PubMed  PubMed Central  Google Scholar 

Genevieve, M., Vivot, A., Gonzalez, C., Raffaitin, C., Barberger-Gateau, P., Gin, H., and Rigalleau V., Skin autofluorescence is associated with past glycaemic control and complications in type 1 diabetes mellitus, Diabetes Metab., 2013, vol. 39, no. 4, pp. 349–354. https://doi.org/10.1016/j.diabet.2013.03.003

Article  CAS  PubMed  Google Scholar 

Banser, A., Naafs, J.C., Hoorweg-Nijman, J.J., van de Garde, E.M., and van der Vorst, M.M., Advanced glycation end products, measured in skin, vs. HbA1c in children with type 1 diabetes mellitus, Pediatr. Diabetes, 2016, vol. 17, no. 6, pp. 426–432. https://doi.org/10.1111/pedi.12311

Article  CAS  PubMed  Google Scholar 

Monnier, V.M., Sell, D.R., Gao, X., Genuth, S.M., Lachin, J.M., Bebu, I., DCCT/EDIC Research Group, Plasma advanced glycation end products and the subsequent risk of microvascular complications in type 1 diabetes in the DCCT/EDIC, BMJ Open Diabetes Res. Care, 2022, vol. 10, no. 1, p. e002667. https://doi.org/10.1136/bmjdrc-2021-002667

Article  PubMed  PubMed Central  Google Scholar 

Zhao, X.W., Yue, W.X., Zhang, S.W., and Chen, Q., Correlation between the accumulation of skin glycosylation end products and the development of type 2 diabetic peripheral neuropathy, BMC Endocr. Disord., 2022, vol. 22, no. 1, p. 106. https://doi.org/10.1186/s12902-022-00997-6

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen, J. Arshi, B., Waqas, K., Lu, T., Bos, D., Ikram, M.A., Uitterlinden, A.G., Kavousi, M., and Zillikens, M.C., Advanced glycation end products measured by skin autofluorescence and subclinical cardiovascular disease: The Rotterdam Study, Cardiovasc. Diabetol., 2023, vol. 22, no. 1, p. 326. https://doi.org/10.1186/s12933-023-02052-7

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ying, L., Shen, Y., Zhang, Y., Wang, Y., Liu, Y., Yin, J., Wang, Y., Yin, J., Zhu, W., Bao, Y., and Zhou, J., Association of advanced glycation end products with lower-extremity atherosclerotic disease in type 2 diabetes mellitus, Front. Cardiovasc. Med., 2021, vol. 8, p. 696156. https://doi.org/10.3389/fcvm.2021.696156

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kostolanská, J., Jakus, V., and Barák, L., HbA1c and serum levels of advanced glycation and oxidation protein products in poorly and well controlled children and adolescents with type 1 diabetes mellitus, J. Pediatr. Endocrinol. Metab., 2009, vol. 22, no. 5, pp. 433–442.

Comments (0)

No login
gif