Deep Learning Methods for Binding Site Prediction in Protein Structures

Jimenez, J., Doerr, S., Martinez-Rosell, G., Rose, A.S., and De Fabritiis, G., Deepsite: Protein-binding site predictor using 3d-convolutional neural networks, Bioinformatics, 2017, vol. 33, no. 19, pp. 3036–3042.

Article  CAS  PubMed  Google Scholar 

Simonyan, K. and Zisserman, A., Very deep convolutional networks for largescale image recognition, ar-Xiv:1409.1556, 2014.

Deganutti, G., Prischi, F., and Reynolds, C.A., Supervised molecular dynamics for exploring the druggability of the SARS-CoV-2 spike protein, J. Comput.-Aided Mol. Des., 2021, vol. 35, pp. 195–207.

Article  CAS  PubMed  Google Scholar 

Lecca, D., Hsueh, S.-C., Luo, W., Tweedie, D., Kim, D.S., Baig, A.M., Vargesson, N., Kim, Y.K., Hwang, I., Kim, S., et al., Novel, thalidomide-like, non-cereblon binding drug tetrafluorobornylphthalimide mitigates inflammation and brain injury, J. Biomed. Sci., 2023, vol. 30, no. 1, p. 16.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tang, L., Qiu, W., Zhang, S., Wang, J., Yang, X., Xu, B., Magnuson, J.T., Xu, E.G., Wu, M., and Zheng, C., Poly- and perfluoroalkyl substances induce immunotoxicity via the TLR pathway in zebrafish: Links to carbon chain length, Environ. Sci. Technol., 2023, vol. 57, no. 15, pp. 6139–6149.

Article  CAS  PubMed  Google Scholar 

Musavizadeh, Z., Najafi-Zarrini, H., Kazemita-bar, S.K., Hashemi, S.H., Faraji, S., Barcaccia, G., and Heidari, P., Genome-wide analysis of potassium channel genes in rice: Expression of the OsAKT and OsKAT genes under salt stress, Genes, 2021, vol. 12, no. 5, p. 784.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Heidari, P., Abdullah, Faraji, S., and Poczai, P., Magnesium transporter gene family: Genome-wide identification and characterization in Theobroma cacao, Corchorus capsularis, and Gossypium hirsutum of family malvaceae, Agronomy, 2021, vol. 11, no. 8, p. 1651.

Article  CAS  Google Scholar 

Semwal, R., Aier, I., Tyagi, P., Raj, U., and Varadwaj, P.K., DeepLBS: A deep convolutional neural network-based ligand-binding site prediction tool, in Proc. 6th International Conference on Information Systems and Computer Networks (ISCON), IEEE, 2023, pp. 1–4.

Sunseri, J. and Koes, D.R., libmolgrid: Graphics processing unit accelerated molecular gridding for deep learning applications, J. Chem. Inf. Model., 2020, vol. 60, no. 3, pp. 1079–1084.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ronneberger, O., Fischer, P., and Brox, T., U-Net: Convolutional networks for biomedical image segmentation, in Proceedings of Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5–9, 2015, Springer, 2015, Part III 18, pp. 234–241.

Stepniewska-Dziubinska, M.M., Zielenkiewicz, P., and Siedlecki, P., Improving detection of protein-ligand binding sites with 3D segmentation, Sci. Rep., 2020, vol. 10, no. 1, p. 5035.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kandel, J., Tayara, H., and Chong, K.T., PUResNet: Prediction of protein-ligand binding sites using deep residual neural network, J. Cheminf., 2021, vol. 13, p. 65.

He, K., Zhang, X., Ren, S., and Sun, J., Deep residual learning for image recognition, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 770–778.

Kordes, S., Beck, J., Shanmugaratnam, S., Flecks, M., and Höcker, B., Physics-based approach to extend a de novo TIM barrel with rationally designed helixloop-helix motifs, Protein Eng., Des. Sel., 2023, vol. 36, p. gzad012.

Wang, X., Zhao, B., Yang, P., Tan, Y., Ma, R., Rao, S., Du, J., Chen, J., Zhou, J., and Liu, S., DUnet: A deep learnin guided protein-ligand binding pocket prediction, bioRxiv, 2022.

Huang, G., Liu, Z., Van Der Maaten, L., and Weinberger, K.Q., Densely connected convolutional networks, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 4700–4708.

Aggarwal, R., Gupta, A., Chelur, V., Jawahar, C.V., and Deva Priyakumar, U., DeepPocket: Ligand binding site detection and segmentation using 3D convolutional neural networks, J. Chem. Inf. Model., 2021, vol. 62, no. 21, pp. 5069–5079.

Article  PubMed  Google Scholar 

Le Guilloux, V., Schmidtke, P., and Tuffery, P., Fpocket: An open source platform for ligand pocket detection, BMC Bioinf., 2009, vol. 10, p. 168.

Zhou, Y., Li, M., Shen, T., Yang, T., Shi, G., Wei, Y., Chen, C., Wang, D., Wang, Y., and Zhang, T., Celastrol targets cullin-associated and neddylation-dissociated 1 to prevent fibroblast–myofibroblast transformation against pulmonary fibrosis, ACS Chem. Biol., 2022, vol. 17, no. 10, pp. 2734–2743.

Article  CAS  PubMed  Google Scholar 

Zhang, N. and Zuo, Z., Identification of a cryptic binding site in CRISPR-Cas9 for targeted inhibition, J. Chem. Inf. Model., 2023, vol. 63, no. 11, pp. 3500–3509.

Article  CAS  PubMed  Google Scholar 

Huang, W., Tu, S., and Xu, L., Revisit lmser from a deep learning perspective, in Proceedings of Intelligence Science and Big Data Engineering. Big Data and Machine Learning: 9th International Conference, IScIDE 2019, Nanjing, China, October 17–20, 2019, Springer, 2019, Part II 9, pp. 197–208.

Li, P., Cao, B., Tu, S., and Xu, L., RecurPocket: Recurrent Lmser network with gating mechanism for protein binding site detection, in 2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), IEEE, 2022, pp. 334–339.

Liu, Y., Li, P., Tu, S., and Xu, L., RefinePocket: An attention-enhanced and mask-guided deep learning approach for protein binding site prediction, IEEE/ACM Trans. Comput. Biol. Bioinf., 2023, vol. 20, no. 5, pp. 3314–3321.

Article  CAS  Google Scholar 

Li, P., Liu, Y., Tu, S., and Xu, L. GlPocket: A multi-scale representation learning approach for protein binding site prediction, in Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI-23, 2023, vol. 8, pp. 4821–4828.

Shi, Y., Huang, Z., Feng, S., Zhong, H., Wang, W., and Sun, Y., Masked label prediction: Unified message passing model for semi-supervised classification, arX-iv:2009.03509, 2020.

Kozlovskii, I. and Popov, P., Spatiotemporal identification of druggable binding sites using deep learning, Commun. Biol., 2020, vol. 3, no. 1, p. 618.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yan, X., Lu, Y., Li, Z., Wei, Q., Gao, Z., Wang, S., Wu, S., and Cui, S., PointSite: A point cloud segmentation tool for identification of protein ligand binding atoms, J. Chem. Inf. Model., 2022, vol. 62, no. 11, pp. 2835–2845.

Article  CAS  PubMed  Google Scholar 

Graham, B., Engelcke, M., and van der Maaten, L., 3D semantic segmentation with submanifold sparse convolutional networks, arXiv:1711.10275, 2018.

Zheng, L., Meng, J., Lin, M., Lv, R., Cheng, H., Zou, L., Sun, J., Li, L.X., Ren, R., and Wang, S., Structure prediction of the entire proteome of monkeypox variants, Acta Mater. Med., 2022, vol. 1, no. 2, pp. 260–264.

Google Scholar 

Li, M., Wang, Y., Guo, C., Wang, S., Zheng, L., Bu, Y., and Ding, K., The claim of primacy of human gut bacteroides ovatus in dietary cellobiose degradation, Gut Microbes, 2023, vol. 15, no. 1, p. 2227434.

Article  PubMed  PubMed Central  Google Scholar 

Julca, I., Mutwil-Anderwald, D., Manoj, V., Khan, Z., Lai, S.K., Yang, L.K., Beh, I.T., Dziekan, J., Lim, Y.P., Lim, S.K., et al., Genomic, transcriptomic, and metabolomic analysis of traditional chinese medicine plant Oldenlandia corymbosa reveals the biosynthesis and mode of action of anti-cancer metabolites, bioRxiv, 2022, p. 2022–06.

Julca, I., Mutwil-Anderwald, D., Manoj, V., Khan, Z., Lai, S.K., Yang, L.K., Beh, I.T., Dziekan, J., Lim, Y.P., Lim, S.K., et al., Genomic, transcriptomic, and metabolomic analysis of Oldenlandia corymbosa reveals the biosynthesis and mode of action of anti-cancer metabolites, J. Integr. Plant Biol., 2023, vol. 65, no. 6, pp. 1442–1466.

Article  CAS  PubMed  Google Scholar 

Rout, M., Mishra, S., Dey, S., Singh, M.K., Dehury, B., and Pati, S., Exploiting the potential of natural polyphenols as antivirals against monkeypox envelope protein F13 using machine learning and all-atoms MD simulations, Comput. Biol. Med., 2023, vol. 162, p. 107116.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rout, M., Dey, S., Mishra, S., Panda, S., Singh, M.K., Sinha, R., Dehury, B., and Pati, S., Machine learning and classical MD simulation to identify inhibitors against the P37 envelope protein of monkeypox virus, J. Biomol. Struct. Dyn., 2023, vol. 42, no. 8, pp. 3935–3948.

Article  PubMed  Google Scholar 

Gilmer, J., Schoenholz, S.S., Riley, P.F., Vinyals, O., and Dahl, G.E., Neural message passing for quantum chemistry, in International Conference on Machine Learning, PMLR, 2017, pp. 1263–1272.

Satorras, V.G., Hoogeboom, E., and Welling, M., E (n) equivariant graph neural networks, in International Conference on Machine Learning, PMLR, 2021, pp. 9323–9332.

Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y., et al., Graph attention networks, arXiv:1710.10903v3, 2018.

Kipf, T.N. and Welling, M., Semi-supervised classification with graph convolutional networks, ar-Xiv:1609.02907, 2016.

Nazem, F., Ghasemi, F., Fassihi, A., Rasti, R., and Dehnavi, A.M., A GU-Net-based architecture predicting ligand–protein-binding atoms, J. Med. Signals Sensors, 2023, vol. 13, no. 1, p. 1.

Article  Google Scholar 

Zhang, Y., Huang, W., Wei, Z., Yuan, Y., and Ding, Z., EquiPocket: An E(3)-equivariant geometric graph neural network for ligand binding site prediction, ar-Xiv:2302.12177, 2023.

Smith, Z., Strobel, M., Vani, B.P., and Tiwary, P., Graph attention site prediction (GrASP): Identifying druggable binding sites using graph neural networks with attention, bioRxiv, 2023.

Canner, S.W., Shanker, S., and Gray, J.J., Structure-based neural network protein–carbohydrate interaction predictions at the residue level, Front. Bioinf., 2023, vol. 3, p. 1186531.

Article  Google Scholar 

Wang, W., Sun, B., Yu, M., Wu, S.Y., Liu, D., Zhang, H., and Zhou, Y., GraphPLBR: Protein-ligand binding residue prediction with deep graph convolution network, IEEE/ACM Trans. Comput. Biol. Bioinf., 2023, vol. 20, no. 3, pp. 2223–2232.

Article  CAS  Google Scholar 

Carbery, A., Buttenschoen, M., Skyner, R., von Delft, F., and Deane, C.M., Learnt representations of proteins can be used for accurate prediction of small molecule binding sites on experimentally determined and predicted protein structures, J. Cheminf., 2024, vol. 16, no. 1, p. 32.

Article  Google Scholar 

Hsu, C., Verkuil, R., Liu, J., Lin, Z., Hie, B., Sercu, T., Lerer, A., and Rives, A., Learning inverse folding from millions of predicted structures, in International Conference on Machine Learning, PMLR, 2022, pp. 8946–8970.

Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., and Liu, T.-Y., LightGBM: A highly efficient gradient boosting decision tree, in Advances in Neural Information Processing Systems, 2017.

Gazizov, A., Lian, A., Goverde, C.A., Ovchinnikov, S., and Polizzi, N.F., AF2BIND: Predicting ligand-binding sites using the pair representation of AlphaFold2, bioRxiv, 2023, p. 2023–10.

Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Zidek, A., Potapenko, A., et al., Highly accurate protein structure prediction with AlphaFold, Nature, 2021, vol. 596, no. 7873, pp. 583–589.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gainza, P., Sverrisson, F., Monti, F., Rodola, E., Boscaini, D., Bronstein, M.M., and Correia, B.E., Deciphering interaction fingerprints from protein molecular surfaces using geometric deep learning, Nat. Methods, 2020, vol. 17, no. 2, pp. 184–192.

Article  CAS  PubMed  Google Scholar 

Sverrisson, F., Feydy, J., Correia, B.E., and Bronstein, M.M., Fast end-to-end learning on protein surfaces, bioRxiv, 2020, p. 2020–12.

Mylonas, S.K., Axenopoulos, A., and Daras, P., DeepSurf: A surface-based deep learning approach for the prediction of ligand binding sites on proteins, Bioinformatics, 2021, vol. 37, no. 12, pp. 1681–1690.

Article  CAS 

Comments (0)

No login
gif