Dysregulation of amino acids balance as potential serum-metabolite biomarkers for diagnosis and prognosis of diabetic retinopathy: a metabolomics study

Wong TY et al. Erratum: diabetic retinopathy. Nat Reviews: Disease Primers, 2016. 2(1).

Cheung N, Mitchell P, Wong T. Diabet Retinopathy Lancet [Internet]. 2010;376(9735):124–36.

Stitt AW, et al. The progress in understanding and treatment of diabetic retinopathy. Prog Retin Eye Res. 2016;51:156–86.

Article  PubMed  Google Scholar 

Simó-Servat O, Hernández C, Simó R. Diabetic retinopathy in the context of patients with diabetes. Ophthalmic Res. 2019;62(4):211–7.

Article  PubMed  Google Scholar 

Fathy C, et al. Disparities in adherence to screening guidelines for diabetic retinopathy in the United States: a comprehensive review and guide for future directions. In seminars in Ophthalmology. Taylor & Francis; 2016.

Simo R, Hernandez C. Novel approaches for treating diabetic retinopathy based on recent pathogenic evidence. Prog Retin Eye Res. 2015;48:160–80.

Article  PubMed  Google Scholar 

Tolstikov V, et al. Current status of metabolomic biomarker discovery: impact of study design and demographic characteristics. Metabolites. 2020;10(6):224.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Amiri-Dashatan N, et al. Metabolomic study of serum in patients with invasive ductal breast carcinoma with LC-MS/MS approach. Int J Biol Mark. 2022;37(4):349–59.

Article  Google Scholar 

Yekta RF, et al. A metabolomic study to identify potential tissue biomarkers for indomethacin-induced gastric ulcer in rats. Avicenna J Med Biotechnol. 2019;11(4):299.

Google Scholar 

Koushki M, et al. Therapeutic effects of hydro-alcoholic extract of Achillea Wilhelmsii C. Koch on indomethacin-induced gastric ulcer in rats: a proteomic and metabolomic approach. BMC Complement Altern Med. 2019;19(1):205.

Article  PubMed  PubMed Central  Google Scholar 

Koushki M, et al. Therapeutic effects of hydro-alcoholic extract of Achillea Wilhelmsii C. Koch on indomethacin-induced gastric ulcer in rats: a proteomic and metabolomic approach. BMC Complement Altern Med. 2019;19:1–16.

Zhu XR, et al. Plasma metabolomic profiling of proliferative diabetic retinopathy. Nutr Metab (Lond). 2019;16:37.

Article  PubMed  Google Scholar 

Tomita Y, et al. Vitreous metabolomics profiling of proliferative diabetic retinopathy. Diabetologia. 2021;64(1):70–82.

Article  CAS  PubMed  Google Scholar 

Pérez-Torres I, María A, Zuniga-Munoz, Guarner-Lans V. Beneficial effects of the amino acid glycine. Mini Rev Med Chem. 2017;17(1):15–32.

McCarty MF, O’Keefe JH, DiNicolantonio JJ. Dietary glycine is rate-limiting for glutathione synthesis and may have broad potential for health protection. Ochsner J. 2018;18(1):81–7.

PubMed  PubMed Central  Google Scholar 

Tang L, Xu G-T, Zhang J-F. Inflammation in diabetic retinopathy: possible roles in pathogenesis and potential implications for therapy. Neural Regeneration Res. 2023;18(5):976–82.

Article  CAS  Google Scholar 

Cruz M, et al. Glycine treatment decreases proinflammatory cytokines and increases interferon-γ in patients with type 2 diabetes. J Endocrinol Investig. 2008;31:694–9.

Article  CAS  Google Scholar 

Alvarado-Vásquez N, et al. Oral glycine administration attenuates diabetic complications in streptozotocin-induced diabetic rats. Life Sci. 2006;79(3):225–32.

Article  PubMed  Google Scholar 

Alvarado-Vásquez N, et al. Effect of glycine in streptozotocin-induced diabetic rats. Comp Biochem Physiol C: Toxicol Pharmacol. 2003;134(4):521–7.

PubMed  Google Scholar 

Gholami S, Kamali Y, Rostamzad MR. Glycine supplementation ameliorates retinal neuronal damage in an experimental model of diabetes in rats: a light and electron microscopic study. J Ophthalmic Vis Res. 2019;14(4):448.

PubMed  PubMed Central  Google Scholar 

Song Z, et al. A new predictive model for the concurrent risk of diabetic retinopathy in type 2 diabetes patients and the effect of metformin on amino acids. Front Endocrinol. 2022;13:985776.

Article  Google Scholar 

Gregory A et al. Glycine is Dysregulated in Human Retinal Endothelial Cells and Proliferative Diabetic Retinopathy 2023.

Sun Y, et al. Metabolomics signatures in type 2 diabetes: a systematic review and integrative analysis. J Clin Endocrinol Metabolism. 2020;105(4):1000–8.

Article  Google Scholar 

Ren W, et al. Glutamine metabolism in macrophages: a novel target for obesity/type 2 diabetes. Adv Nutr. 2019;10(2):321–30.

Article  PubMed  PubMed Central  Google Scholar 

Torres-Santiago L, et al. Does oral glutamine improve insulin sensitivity in adolescents with type 1 diabetes? Nutrition. 2017;34:1–6.

Article  CAS  PubMed  Google Scholar 

Thomas K et al. Glutamine prevents acute kidney injury by modulating oxidative stress and apoptosis in tubular epithelial cells. Jci Insight, 2022. 7(21).

Hou X-W, Wang Y, Pan C-W. Metabolomics in diabetic retinopathy: a systematic review. Investig Ophthalmol Vis Sci. 2021;62(10):4–4.

Article  CAS  Google Scholar 

Poorabbas A, et al. Determination of free L-carnitine levels in type II diabetic women with and without complications. Eur J Clin Nutr. 2007;61(7):892–5.

Article  CAS  PubMed  Google Scholar 

Liepinsh E, et al. High L-carnitine concentrations do not prevent late diabetic complications in type 1 and 2 diabetic patients. Nutr Res. 2012;32(5):320–7.

Article  CAS  PubMed  Google Scholar 

Paris LP, et al. Global metabolomics reveals metabolic dysregulation in ischemic retinopathy. Metabolomics. 2016;12:1–10.

Article  CAS  Google Scholar 

Komeima K, et al. Antioxidants reduce cone cell death in a model of retinitis pigmentosa. Proc Natl Acad Sci. 2006;103(30):11300–5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mikirova NA, Ichim TE, Riordan NH. Anti-angiogenic effect of high doses of ascorbic acid. J Translational Med. 2008;6(1):50.

Article  Google Scholar 

Sinclair A, et al. Disturbed handling of ascorbic acid in diabetic patients with and without microangiopathy during high dose ascorbate supplementation. Diabetologia. 1991;34:171–5.

Article  CAS  PubMed  Google Scholar 

Wang H, et al. Metabolomic profile of diabetic retinopathy: a GC-TOFMS-based approach using vitreous and aqueous humor. Acta Diabetol. 2020;57:41–51.

Article  PubMed  Google Scholar 

Wang Z, et al. Serum untargeted metabolomics reveal potential biomarkers of progression of diabetic retinopathy in asians. Front Mol Biosci. 2022;9:871291.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang H, et al. Plasma and vitreous metabolomics profiling of proliferative diabetic retinopathy. Investig Ophthalmol Vis Sci. 2022;63(2):17–17.

Article  CAS  Google Scholar 

Aldini G, et al. Intervention strategies to inhibit protein carbonylation by lipoxidation-derived reactive carbonyls. Med Res Rev. 2007;27(6):817–68.

Article  CAS  PubMed  Google Scholar 

Lee SG, et al. Effect of lipoic acid on expression of angiogenic factors in diabetic rat retina. Clin Exp Ophthalmol. 2012;40(1):e47–57.

Article  PubMed  Google Scholar 

Obrosova I, et al. Antioxidants attenuate early up regulation of retinal vascular endothelial growth factor in streptozotocin-diabetic rats. Diabetologia. 2001;44:1102–10.

Article  CAS  PubMed  Google Scholar 

Kim YS, et al. Alpha-lipoic acid reduces retinal cell death in diabetic mice. Biochem Biophys Res Commun. 2018;503(3):1307–14.

Article  CAS  PubMed  Google Scholar 

Kan E, et al. Effects of alpha-lipoic acid on retinal ganglion cells, retinal thicknesses, and VEGF production in an experimental model of diabetes. Int Ophthalmol. 2017;37:1269–78.

Article  PubMed  Google Scholar 

Lin J, et al. Effect of R-(+)-α-lipoic acid on experimental diabetic retinopathy. Diabetologia. 2006;49:1089–96.

Article  CAS 

Comments (0)

No login
gif