Falcão-Pires I, Leite Moreira A. Diabetic cardiomyopathy: understanding the molecular and cellular basis to progress in diagnosis and treatment. Heart Fail Rev. 2011;17:325–44.
Gulsin GS, Athithan L, McCann GP. Diabetic cardiomyopathy: prevalence, determinants and potential treatments. Therapeutic Adv Endocrinol Metabolism. 2019;10:2042018819834869.
Athithan L, Gulsin GS, McCann GP, Levelt E. Diabetic cardiomyopathy: pathophysiology, theories and evidence to date. World J Diabetes.10(10):490–510. https://doi.org/10.4239/wjd.v10.i10.490.
Fanning AS, Anderson JM. Zonula Occludens-1 and– 2 are cytosolic scaffolds that regulate the Assembly of Cellular junctions. Ann N Y Acad Sci. 2009;1165(1):113–20.
Article CAS PubMed PubMed Central Google Scholar
Furuse M. Molecular basis of the Core structure of tight junctions. Cold Spring Harb Perspect Biol. 2010;2(1).
Aneja A, Tang WHW, Bansilal S, Garcia MJ, Farkouh ME. Diabetic Cardiomyopathy: insights into Pathogenesis, Diagnostic challenges, and Therapeutic options. Am J Med. 2008;121(9):748–57.
Al Hroob AM, Abukhalil MH, Hussein OE, Mahmoud AM. Pathophysiological mechanisms of diabetic cardiomyopathy and the therapeutic potential of epigallocatechin-3-gallate. Biomed Pharmacother. 2019;109:2155–72.
Article CAS PubMed Google Scholar
González-Casanova J, Schmachtenberg O, Martínez AD, Sanchez HA, Harcha PA, Rojas-Gomez D. An update on connexin gap junction and hemichannels in diabetic retinopathy. Int J Mol Sci. 2021;22(6):3194.
Article PubMed PubMed Central Google Scholar
Inoguchi T, Yu HY, Imamura M, Kakimoto M, Kuroki T, Maruyama T, et al. Altered gap junction activity in cardiovascular tissues of diabetes. Med Electron Microscopy. 2001;34(2):86–91.
Paudel SS. Substrate stiffness: a mechanical determinant of endothelial phenotype. University of South Alabama; 2023.
Tsukita S, Tanaka H, Tamura A. The claudins: from tight junctions to biological systems. Trends Biochem Sci. 2019;44(2):141–52.
Article CAS PubMed Google Scholar
Li Z, Jin Z-Q. Ischemic preconditioning enhances integrity of coronary endothelial tight junctions. Biochem Biophys Res Commun. 2012;425(3):630–5.
Article CAS PubMed Google Scholar
Li B, Li Y, Liu K, Wang X, Qi J, Wang B, et al. High glucose decreases claudins-5 and– 11 in cardiac microvascular endothelial cells: antagonistic effects of tongxinluo. Endocr Res. 2017;42(1):15–21.
Article CAS PubMed Google Scholar
Matter K, Balda MS. Functional analysis of tight junctions. Methods. 2003;30(3):228–34.
Article CAS PubMed Google Scholar
Okano J, Kojima H, Katagi M, Nakagawa T, Nakae Y, Terashima T, et al. Hyperglycemia induces skin barrier dysfunctions with Impairment of Epidermal Integrity in Non-wounded skin of type 1 Diabetic mice. PLoS ONE. 2016;11(11):e0166215.
Article PubMed PubMed Central Google Scholar
Kumar MA, Khan TA, Al Marzooqi SK, Abdulla A, Masoodi T, Akil ASA-S, et al. Molecular Architecture and function of tight junctions. Tight junctions in inflammation and Cancer. Springer; 2023. pp. 145–69.
Adil MS, Narayanan SP, Somanath PR. Cell-cell junctions: structure and regulation in physiology and pathology. Tissue Barriers. 2021;9(1):1848212.
Bauer H, Traweger A. Tight junctions of the blood-brain barrier–a molecular gatekeeper. CNS Neurol Disorders-Drug Targets (Formerly Curr Drug Targets-CNS Neurol Disorders). 2016;15(9):1016–29.
Dusek RL, Attardi LD. Desmosomes: new perpetrators in tumour suppression. Nat Rev Cancer. 2011;11(5):317–23.
Article CAS PubMed PubMed Central Google Scholar
Campbell HK, Maiers JL, DeMali KA. Interplay between tight junctions & adherens junctions. Exp Cell Res. 2017;358(1):39–44.
Article CAS PubMed PubMed Central Google Scholar
Umeda K, Ikenouchi J, Katahira-Tayama S, Furuse K, Sasaki H, Nakayama M, et al. ZO-1 and ZO-2 independently determine where claudins are polymerized in tight-Junction strand formation. Cell. 2006;126(4):741–54.
Article CAS PubMed Google Scholar
Beutel O, Maraspini R, Pombo-García K, Martin-Lemaitre C, Honigmann A. Phase separation of Zonula Occludens Proteins drives formation of tight junctions. Cell. 2019;179(4):923–e3611.
Article CAS PubMed Google Scholar
Lu Y, Ma Z, Zhang Z, Xiong X, Wang X, Zhang H, et al. Yin Yang 1 promotes hepatic steatosis through repression of farnesoid X receptor in obese mice. Gut. 2014;63(1):170–8.
Article CAS PubMed Google Scholar
Jesaitis LA, Goodenough DA. Molecular characterization and tissue distribution of ZO-2, a tight junction protein homologous to ZO-1 and the Drosophila discs-large tumor suppressor protein. J Cell Biol. 1994;124:949–61.
Article CAS PubMed Google Scholar
Inoko A, Itoh M, Tamura A, Matsuda M, Furuse M, Tsukita S. Expression and distribution of ZO-3, a tight junction MAGUK protein, in mouse tissues. Genes Cells. 2003;8(11):837–45.
Article CAS PubMed Google Scholar
Willis KJ, Bailey RM, Bhagwat SA, Birks HJB. Biodiversity baselines, thresholds and resilience: testing predictions and assumptions using palaeoecological data. Trends Ecol Evol. 2010;25(10):583–91.
Article CAS PubMed Google Scholar
Stuart RO, Nigam SK. Regulated assembly of tight junctions by protein kinase C. Proceedings of the National Academy of Sciences. 1995;92(13):6072-6.
Valiunas V, White TW. Connexin43 and connexin50 channels exhibit different permeability to the second messenger inositol triphosphate. Sci Rep. 2020;10(1):8744.
Article CAS PubMed PubMed Central Google Scholar
Söhl G, Willecke K. Gap junctions and the connexin protein family. Cardiovascular Res. 2004;62(2):228–32.
Zhang W-Y, JW, Li A-Z. A study of the effects of SGLT-2 inhibitors on diabetic cardiomyopathy through miR-30d/KLF9/VEGFA pathway. Eur Rev Med Pharmacol Sci. 2020;24(N 11):6346–59.
Yu L, Zhao Y, Xu S, Ding F, Jin C, Fu G et al. Advanced Glycation End product (AGE)-AGE receptor (RAGE) system upregulated Connexin43 expression in Rat cardiomyocytes via PKC and Erk MAPK Pathways. Int J Mol Sci [Internet]. 2013; 14:[2242-57 pp.].
Sheu J-J. Impact of diabetes on cardiomyocyte apoptosis and connexin43 gap junction integrity: role of pharmacological modulation. International heart journal vol. 48,2: 233– 45. https://doi.org/10.1536/ihj.48.233. International heart journal (2007);vol. 48 (2007): (2):233– 45.
Hegazy M, Perl AL, Svoboda SA, Green KJ. Desmosomal cadherins in health and disease. Annu Rev Pathol. 2022;17:47–72.
Article CAS PubMed Google Scholar
Waschke J. The desmosome and pemphigus. Histochem Cell Biol. 2008;130(1):21–54.
Article CAS PubMed PubMed Central Google Scholar
Green KJ, Simpson CL. Desmosomes: New perspectives on a classic. J Invest Dermatology. 2007;127(11):2499–515.
Nekrasova OE, Amargo EV, Smith WO, Chen J, Kreitzer GE, Green KJ. Desmosomal cadherins utilize distinct kinesins for assembly into desmosomes. J Cell Biol. 2011;195(7):1185–203.
Article CAS PubMed PubMed Central Google Scholar
Delmar M, McKenna WJ. The Cardiac Desmosome and Arrhythmogenic Cardiomyopathies. Circul Res. 2010;107(6):700–14.
Zhang L-Z, Lei S. Changes of junctions of endothelial cells in coronary sclerosis: a review. Chronic Dis Translational Med. 2016;2(1):22–6.
Vasioukhin V, Bowers E, Bauer C, Degenstein L, Fuchs E. Desmoplakin is essential in epidermal sheet formation. Nat Cell Biol. 2001;3(12):1076–85.
Comments (0)