The impact of diabetes on tight junctions in cardiomyopathy dysfunction

Falcão-Pires I, Leite Moreira A. Diabetic cardiomyopathy: understanding the molecular and cellular basis to progress in diagnosis and treatment. Heart Fail Rev. 2011;17:325–44.

Article  Google Scholar 

Gulsin GS, Athithan L, McCann GP. Diabetic cardiomyopathy: prevalence, determinants and potential treatments. Therapeutic Adv Endocrinol Metabolism. 2019;10:2042018819834869.

Article  CAS  Google Scholar 

Athithan L, Gulsin GS, McCann GP, Levelt E. Diabetic cardiomyopathy: pathophysiology, theories and evidence to date. World J Diabetes.10(10):490–510. https://doi.org/10.4239/wjd.v10.i10.490.

Fanning AS, Anderson JM. Zonula Occludens-1 and– 2 are cytosolic scaffolds that regulate the Assembly of Cellular junctions. Ann N Y Acad Sci. 2009;1165(1):113–20.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Furuse M. Molecular basis of the Core structure of tight junctions. Cold Spring Harb Perspect Biol. 2010;2(1).

Aneja A, Tang WHW, Bansilal S, Garcia MJ, Farkouh ME. Diabetic Cardiomyopathy: insights into Pathogenesis, Diagnostic challenges, and Therapeutic options. Am J Med. 2008;121(9):748–57.

Article  PubMed  Google Scholar 

Al Hroob AM, Abukhalil MH, Hussein OE, Mahmoud AM. Pathophysiological mechanisms of diabetic cardiomyopathy and the therapeutic potential of epigallocatechin-3-gallate. Biomed Pharmacother. 2019;109:2155–72.

Article  CAS  PubMed  Google Scholar 

González-Casanova J, Schmachtenberg O, Martínez AD, Sanchez HA, Harcha PA, Rojas-Gomez D. An update on connexin gap junction and hemichannels in diabetic retinopathy. Int J Mol Sci. 2021;22(6):3194.

Article  PubMed  PubMed Central  Google Scholar 

Inoguchi T, Yu HY, Imamura M, Kakimoto M, Kuroki T, Maruyama T, et al. Altered gap junction activity in cardiovascular tissues of diabetes. Med Electron Microscopy. 2001;34(2):86–91.

Article  CAS  Google Scholar 

Paudel SS. Substrate stiffness: a mechanical determinant of endothelial phenotype. University of South Alabama; 2023.

Tsukita S, Tanaka H, Tamura A. The claudins: from tight junctions to biological systems. Trends Biochem Sci. 2019;44(2):141–52.

Article  CAS  PubMed  Google Scholar 

Li Z, Jin Z-Q. Ischemic preconditioning enhances integrity of coronary endothelial tight junctions. Biochem Biophys Res Commun. 2012;425(3):630–5.

Article  CAS  PubMed  Google Scholar 

Li B, Li Y, Liu K, Wang X, Qi J, Wang B, et al. High glucose decreases claudins-5 and– 11 in cardiac microvascular endothelial cells: antagonistic effects of tongxinluo. Endocr Res. 2017;42(1):15–21.

Article  CAS  PubMed  Google Scholar 

Matter K, Balda MS. Functional analysis of tight junctions. Methods. 2003;30(3):228–34.

Article  CAS  PubMed  Google Scholar 

Okano J, Kojima H, Katagi M, Nakagawa T, Nakae Y, Terashima T, et al. Hyperglycemia induces skin barrier dysfunctions with Impairment of Epidermal Integrity in Non-wounded skin of type 1 Diabetic mice. PLoS ONE. 2016;11(11):e0166215.

Article  PubMed  PubMed Central  Google Scholar 

Kumar MA, Khan TA, Al Marzooqi SK, Abdulla A, Masoodi T, Akil ASA-S, et al. Molecular Architecture and function of tight junctions. Tight junctions in inflammation and Cancer. Springer; 2023. pp. 145–69.

Adil MS, Narayanan SP, Somanath PR. Cell-cell junctions: structure and regulation in physiology and pathology. Tissue Barriers. 2021;9(1):1848212.

Article  PubMed  Google Scholar 

Bauer H, Traweger A. Tight junctions of the blood-brain barrier–a molecular gatekeeper. CNS Neurol Disorders-Drug Targets (Formerly Curr Drug Targets-CNS Neurol Disorders). 2016;15(9):1016–29.

CAS  Google Scholar 

Dusek RL, Attardi LD. Desmosomes: new perpetrators in tumour suppression. Nat Rev Cancer. 2011;11(5):317–23.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Campbell HK, Maiers JL, DeMali KA. Interplay between tight junctions & adherens junctions. Exp Cell Res. 2017;358(1):39–44.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Umeda K, Ikenouchi J, Katahira-Tayama S, Furuse K, Sasaki H, Nakayama M, et al. ZO-1 and ZO-2 independently determine where claudins are polymerized in tight-Junction strand formation. Cell. 2006;126(4):741–54.

Article  CAS  PubMed  Google Scholar 

Beutel O, Maraspini R, Pombo-García K, Martin-Lemaitre C, Honigmann A. Phase separation of Zonula Occludens Proteins drives formation of tight junctions. Cell. 2019;179(4):923–e3611.

Article  CAS  PubMed  Google Scholar 

Lu Y, Ma Z, Zhang Z, Xiong X, Wang X, Zhang H, et al. Yin Yang 1 promotes hepatic steatosis through repression of farnesoid X receptor in obese mice. Gut. 2014;63(1):170–8.

Article  CAS  PubMed  Google Scholar 

Jesaitis LA, Goodenough DA. Molecular characterization and tissue distribution of ZO-2, a tight junction protein homologous to ZO-1 and the Drosophila discs-large tumor suppressor protein. J Cell Biol. 1994;124:949–61.

Article  CAS  PubMed  Google Scholar 

Inoko A, Itoh M, Tamura A, Matsuda M, Furuse M, Tsukita S. Expression and distribution of ZO-3, a tight junction MAGUK protein, in mouse tissues. Genes Cells. 2003;8(11):837–45.

Article  CAS  PubMed  Google Scholar 

Willis KJ, Bailey RM, Bhagwat SA, Birks HJB. Biodiversity baselines, thresholds and resilience: testing predictions and assumptions using palaeoecological data. Trends Ecol Evol. 2010;25(10):583–91.

Article  CAS  PubMed  Google Scholar 

Stuart RO, Nigam SK. Regulated assembly of tight junctions by protein kinase C. Proceedings of the National Academy of Sciences. 1995;92(13):6072-6.

Valiunas V, White TW. Connexin43 and connexin50 channels exhibit different permeability to the second messenger inositol triphosphate. Sci Rep. 2020;10(1):8744.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Söhl G, Willecke K. Gap junctions and the connexin protein family. Cardiovascular Res. 2004;62(2):228–32.

Article  Google Scholar 

Zhang W-Y, JW, Li A-Z. A study of the effects of SGLT-2 inhibitors on diabetic cardiomyopathy through miR-30d/KLF9/VEGFA pathway. Eur Rev Med Pharmacol Sci. 2020;24(N 11):6346–59.

Yu L, Zhao Y, Xu S, Ding F, Jin C, Fu G et al. Advanced Glycation End product (AGE)-AGE receptor (RAGE) system upregulated Connexin43 expression in Rat cardiomyocytes via PKC and Erk MAPK Pathways. Int J Mol Sci [Internet]. 2013; 14:[2242-57 pp.].

Sheu J-J. Impact of diabetes on cardiomyocyte apoptosis and connexin43 gap junction integrity: role of pharmacological modulation. International heart journal vol. 48,2: 233– 45. https://doi.org/10.1536/ihj.48.233. International heart journal (2007);vol. 48 (2007): (2):233– 45.

Hegazy M, Perl AL, Svoboda SA, Green KJ. Desmosomal cadherins in health and disease. Annu Rev Pathol. 2022;17:47–72.

Article  CAS  PubMed  Google Scholar 

Waschke J. The desmosome and pemphigus. Histochem Cell Biol. 2008;130(1):21–54.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Green KJ, Simpson CL. Desmosomes: New perspectives on a classic. J Invest Dermatology. 2007;127(11):2499–515.

Article  CAS  Google Scholar 

Nekrasova OE, Amargo EV, Smith WO, Chen J, Kreitzer GE, Green KJ. Desmosomal cadherins utilize distinct kinesins for assembly into desmosomes. J Cell Biol. 2011;195(7):1185–203.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Delmar M, McKenna WJ. The Cardiac Desmosome and Arrhythmogenic Cardiomyopathies. Circul Res. 2010;107(6):700–14.

Article  CAS  Google Scholar 

Zhang L-Z, Lei S. Changes of junctions of endothelial cells in coronary sclerosis: a review. Chronic Dis Translational Med. 2016;2(1):22–6.

Article  Google Scholar 

Vasioukhin V, Bowers E, Bauer C, Degenstein L, Fuchs E. Desmoplakin is essential in epidermal sheet formation. Nat Cell Biol. 2001;3(12):1076–85.

Article  CAS 

Comments (0)

No login
gif