M. Mischenko, J. W. Hovenier, and L. D. Travis, Light Scattering by Nonspherical Particles (Academic press, San Diego, 2000).
K. N. Liou, “Influence of cirrus clouds on weather and climate processes—a global perspective,” Mon. Weather. Rev. 114 (6), 1167–1199 (1986).
H. Jacobowitz, “A method for computing the transfer of solar radiation through clouds of hexagonal ice crystals,” J. Quant. Spectrosc. Radiat. Transfer 11 (6), 691–695 (1971).
W. B. Sun, N. G. Loeb, S. Tanev, and G. Videen, “Finite-difference time-domain solution of light scattering by an infinite dielectric column immersed in an absorbing medium,” Appl. Opt. 44 (10), 1977–1983 (2005).
P. Yang and K. N. Liou, “Finite-difference time domain method for light scattering by small ice crystals in three-dimensional space,” J. Opt. Soc. Am. A 13 (10), 2072–2085 (1996).
K. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antenn. Propag. 14 (3), 302–307 (1996).
M. A. Yurkin, V. P. Maltsev, and A. G. Hoekstra, “The discrete dipole approximation for simulation of light scattering by particles much larger than the wavelength,” J. Quant. Spectrosc. Radiat. Transfer 106 (1), 546–557 (2007).
E. Zubko, Y. Shkuratov, and G. Videen, “Effect of morphology on light scattering by agglomerates,” J. Quant. Spectrosc. Radiat. Transfer 150, 42–54 (2015).
E. Zubko, H. Kimura, Y. Shkuratov, K. Muinonen, T. Yamamoto, H. Okamoto, and G. Videen, “Effect of absorption on light scattering by agglomerated debris particles,” J. Quant. Spectrosc. Radiat. Transfer 110 (14), 1741–1749.
V. Noel, G. Ledanois, H. Chepfer, and P. H. Flamant, “Computation of a single-scattering matrix for nonspherical particles randomly or horizontally oriented in space,” Appl. Opt. 40 (24), 4365–4375 (2001).
M. I. Mishchenko and A. Macke, “Incorporation of physical optics effects and computation of the legendre expansion for ray-tracing phase functions involving δ-function transmission,” J. Geophys. Res.: Atmos. 103 (D2), 1799–1805 (1998).
Q. Cai and K. N. Liou, “Polarized-light scattering by hexagonal ice crystals—theory,” Appl. Opt. 21 (19), 3569–3580 (1982).
A. G. Borovoi, N. V. Kustova, and U. G. Oppel, “Light backscattering by hexagonal ice crystal particles in the geometrical optics approximation,” Opt. Eng. 44 (7), 071208 (2005).
A. V. Konoshonkin, N. V. Kustova, V. A. Osipov, A. G. Borovoi, K. Masuda, H. Ishimoto, and H. Okamoto, “Physical optics approximation for solving problems of light scattering on the ice crystal particles: Comparison of the vector formulations of diffraction,” Opt. Atmos. Okeana 28 (9), 830–843 (2015). https://doi.org/10.15372/AOO20150909
A. Borovoi, A. Konoshonkin, and N. Kustova, “The physical-optics approximation and its application to light backscattering by hexagonal ice crystals,” J. Quant. Spectrosc. Radiat. Transfer 146, 181–189 (2014).
A. V. Konoshonkin, N. V. Kustova, and A. G. Borovoi, “Beam-splitting code for light scattering by ice crystal particles within geometric-optics approximation,” J. Quant. Spectrosc. Radiat. Transfer 164, 175–183 (2015).
H. Okamoto, K. Sato, A. Borovoi, H. Ishimoto, K. Masuda, A. Konoshonkin, and N. Kustova, “Interpretation of lidar ratio and depolarization ratio of ice clouds using spaceborne high-spectral-resolution polarization lidar,” Opt. Express 27 (25), 36 587–36 600 (2019).
B. A. Baum, A. J. Heymsfield, P. Yang, and S. T. Bedka, “Bulk scattering properties for the remote sensing of ice clouds. Part I: Microphysical data and models,” J. Appl. Meteorol. 44 (12), 1885–1895 (2005).
C. G. Schmitt and A. J. Heymsfield, “On the occurrence of hollow bullet rosette- and column-shaped ice crystals in midlatitude cirrus,” J. Atmos. Sci. 64 (12), 4514–4519 (2007).
L. M. Miloshevich and A. J. Heymsfield, “A balloon-borne continuous cloud particle replicator for measuring vertical profiles of cloud microphysical properties: Instrument design, performance, and collection efficiency analysis,” J. Atmos. Ocean. Technol. 14 (4), 753–768 (1997).
Y. Takano and K. N. Liou, “Radiative transfer in cirrus clouds. 3. Light-scattering by irregular ice crystals,” J. Atmos. Sci. 52 (7), 818–837 (1995).
H. R. Smith, P. J. Connolly, A. J. Baran, E. Hesse, A. R. D. Smedley, and A. R. Webb, “Cloud chamber laboratory investigations into scattering properties of hollow ice particles,” J. Quant. Spectrosc. Radiat. Transfer 157, 106–118 (2015).
D. N. Timofeev, A. V. Konoshonkin, and N. V. Kustova, “Modified Beam-Splitting 1 (MBS-1) algorithm for solving the problem of light scattering by nonconvex atmospheric ice particles,” Atmos. Ocean. Opt. 31 (6), 642–649 (2018).
M. Chiruta, “The capacitance of solid and hollow hexagonal ice columns,” Geophys. Rev. Lett. 32 (5), L05803 (2005).
D. L. Mitchell and W. P. Arnott, “A model predicting the evolution of ice particle size spectra and radiative properties of cirrus clouds. Part II: Dependence of absorption and extinction on ice crystal morphology,” J. Atmos. Sci. 51 (6), 817–832 (1994).
A. Heymsfield, “Ice crystal terminal velocities,” J. Atmos. Sci. 29 (7), 1348–1357 (1972).
A. H. Auer and D. L. Veal, “The dimension of ice crystals in natural clouds,” J. Atmos. Sci. 27 (6), 919–926 (1970).
S. G. Warren and R. E. Brandt, “Optical constants of ice from the ultraviolet to the microwave: A revised compilation,” J. Geophys. Res. 113, D14 (2008).
D. N. Timofeev, A. V. Konoshonkin, N. V. Kustova, V. A. Shishko, and A. G. Borovoi, “Estimation of the absorption effect on light scattering by atmospheric ice crystals for wavelengths typical for problems of laser sounding of the atmosphere,” Atmos. Ocean. Opt. 32 (5), 564–568 (2019).
A. Konoshonkin, A. Borovoi, N. Kustova, and J. Reichardt, “Power laws for backscattering by ice crystals of cirrus clouds,” Opt. Express 25 (19), 22 341–22 346 (2017).
O. V. Sokovykh and I. V. Samokhvalov, “System integration of experimental equipment for high-altitude polarization lidar,” Opt. Atmos. Okeana 26 (10), 891–896 (2013).
A. G. Borovoi, “Light scattering by large particles: Physical optics and the shadow-forming field,” in Light Scattering Reviews8: Radiative Transfer and Light Scattering (Springer, 2013), pp. 115–138.
V. Vouk, “Projected area of convex bodies,” Nature 162 (4113), 330–331 (1948).
G. M. McFarquhar and A. J. Heymsfield, “Parameterization of tropical cirrus ice crystal size distributions and implications for radiative transfer: Results from CEPEX,” J. Atmos. Sci. 54 (17), 2187–2200 (1997).
URL: https://iao.ru/ru/about/resources/info/cluster. Cited January 13, 2023.
Comments (0)