Properties of Light Backscattering on Hollow Hexagonal Ice Columns for Optical Models of Cirrus Clouds

M. Mischenko, J. W. Hovenier, and L. D. Travis, Light Scattering by Nonspherical Particles (Academic press, San Diego, 2000).

Google Scholar 

K. N. Liou, “Influence of cirrus clouds on weather and climate processes—a global perspective,” Mon. Weather. Rev. 114 (6), 1167–1199 (1986).

Article  ADS  Google Scholar 

H. Jacobowitz, “A method for computing the transfer of solar radiation through clouds of hexagonal ice crystals,” J. Quant. Spectrosc. Radiat. Transfer 11 (6), 691–695 (1971).

Article  ADS  Google Scholar 

W. B. Sun, N. G. Loeb, S. Tanev, and G. Videen, “Finite-difference time-domain solution of light scattering by an infinite dielectric column immersed in an absorbing medium,” Appl. Opt. 44 (10), 1977–1983 (2005).

Article  ADS  Google Scholar 

P. Yang and K. N. Liou, “Finite-difference time domain method for light scattering by small ice crystals in three-dimensional space,” J. Opt. Soc. Am. A 13 (10), 2072–2085 (1996).

Article  ADS  Google Scholar 

K. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antenn. Propag. 14 (3), 302–307 (1996).

ADS  Google Scholar 

M. A. Yurkin, V. P. Maltsev, and A. G. Hoekstra, “The discrete dipole approximation for simulation of light scattering by particles much larger than the wavelength,” J. Quant. Spectrosc. Radiat. Transfer 106 (1), 546–557 (2007).

Article  ADS  Google Scholar 

E. Zubko, Y. Shkuratov, and G. Videen, “Effect of morphology on light scattering by agglomerates,” J. Quant. Spectrosc. Radiat. Transfer 150, 42–54 (2015).

Article  ADS  Google Scholar 

E. Zubko, H. Kimura, Y. Shkuratov, K. Muinonen, T. Yamamoto, H. Okamoto, and G. Videen, “Effect of absorption on light scattering by agglomerated debris particles,” J. Quant. Spectrosc. Radiat. Transfer 110 (14), 1741–1749.

V. Noel, G. Ledanois, H. Chepfer, and P. H. Flamant, “Computation of a single-scattering matrix for nonspherical particles randomly or horizontally oriented in space,” Appl. Opt. 40 (24), 4365–4375 (2001).

Article  ADS  Google Scholar 

M. I. Mishchenko and A. Macke, “Incorporation of physical optics effects and computation of the legendre expansion for ray-tracing phase functions involving δ-function transmission,” J. Geophys. Res.: Atmos. 103 (D2), 1799–1805 (1998).

Article  ADS  Google Scholar 

Q. Cai and K. N. Liou, “Polarized-light scattering by hexagonal ice crystals—theory,” Appl. Opt. 21 (19), 3569–3580 (1982).

Article  ADS  Google Scholar 

A. G. Borovoi, N. V. Kustova, and U. G. Oppel, “Light backscattering by hexagonal ice crystal particles in the geometrical optics approximation,” Opt. Eng. 44 (7), 071208 (2005).

Article  ADS  Google Scholar 

A. V. Konoshonkin, N. V. Kustova, V. A. Osipov, A. G. Borovoi, K. Masuda, H. Ishimoto, and H. Okamoto, “Physical optics approximation for solving problems of light scattering on the ice crystal particles: Comparison of the vector formulations of diffraction,” Opt. Atmos. Okeana 28 (9), 830–843 (2015). https://doi.org/10.15372/AOO20150909

Article  Google Scholar 

A. Borovoi, A. Konoshonkin, and N. Kustova, “The physical-optics approximation and its application to light backscattering by hexagonal ice crystals,” J. Quant. Spectrosc. Radiat. Transfer 146, 181–189 (2014).

Article  ADS  Google Scholar 

A. V. Konoshonkin, N. V. Kustova, and A. G. Borovoi, “Beam-splitting code for light scattering by ice crystal particles within geometric-optics approximation,” J. Quant. Spectrosc. Radiat. Transfer 164, 175–183 (2015).

Article  ADS  Google Scholar 

H. Okamoto, K. Sato, A. Borovoi, H. Ishimoto, K. Masuda, A. Konoshonkin, and N. Kustova, “Interpretation of lidar ratio and depolarization ratio of ice clouds using spaceborne high-spectral-resolution polarization lidar,” Opt. Express 27 (25), 36 587–36 600 (2019).

Article  Google Scholar 

B. A. Baum, A. J. Heymsfield, P. Yang, and S. T. Bedka, “Bulk scattering properties for the remote sensing of ice clouds. Part I: Microphysical data and models,” J. Appl. Meteorol. 44 (12), 1885–1895 (2005).

Article  ADS  Google Scholar 

C. G. Schmitt and A. J. Heymsfield, “On the occurrence of hollow bullet rosette- and column-shaped ice crystals in midlatitude cirrus,” J. Atmos. Sci. 64 (12), 4514–4519 (2007).

Article  ADS  Google Scholar 

L. M. Miloshevich and A. J. Heymsfield, “A balloon-borne continuous cloud particle replicator for measuring vertical profiles of cloud microphysical properties: Instrument design, performance, and collection efficiency analysis,” J. Atmos. Ocean. Technol. 14 (4), 753–768 (1997).

Article  ADS  Google Scholar 

Y. Takano and K. N. Liou, “Radiative transfer in cirrus clouds. 3. Light-scattering by irregular ice crystals,” J. Atmos. Sci. 52 (7), 818–837 (1995).

Article  ADS  Google Scholar 

H. R. Smith, P. J. Connolly, A. J. Baran, E. Hesse, A. R. D. Smedley, and A. R. Webb, “Cloud chamber laboratory investigations into scattering properties of hollow ice particles,” J. Quant. Spectrosc. Radiat. Transfer 157, 106–118 (2015).

Article  ADS  Google Scholar 

D. N. Timofeev, A. V. Konoshonkin, and N. V. Kustova, “Modified Beam-Splitting 1 (MBS-1) algorithm for solving the problem of light scattering by nonconvex atmospheric ice particles,” Atmos. Ocean. Opt. 31 (6), 642–649 (2018).

Article  Google Scholar 

M. Chiruta, “The capacitance of solid and hollow hexagonal ice columns,” Geophys. Rev. Lett. 32 (5), L05803 (2005).

D. L. Mitchell and W. P. Arnott, “A model predicting the evolution of ice particle size spectra and radiative properties of cirrus clouds. Part II: Dependence of absorption and extinction on ice crystal morphology,” J. Atmos. Sci. 51 (6), 817–832 (1994).

Article  ADS  Google Scholar 

A. Heymsfield, “Ice crystal terminal velocities,” J. Atmos. Sci. 29 (7), 1348–1357 (1972).

Article  ADS  Google Scholar 

A. H. Auer and D. L. Veal, “The dimension of ice crystals in natural clouds,” J. Atmos. Sci. 27 (6), 919–926 (1970).

Article  ADS  Google Scholar 

S. G. Warren and R. E. Brandt, “Optical constants of ice from the ultraviolet to the microwave: A revised compilation,” J. Geophys. Res. 113, D14 (2008).

Google Scholar 

D. N. Timofeev, A. V. Konoshonkin, N. V. Kustova, V. A. Shishko, and A. G. Borovoi, “Estimation of the absorption effect on light scattering by atmospheric ice crystals for wavelengths typical for problems of laser sounding of the atmosphere,” Atmos. Ocean. Opt. 32 (5), 564–568 (2019).

Article  Google Scholar 

A. Konoshonkin, A. Borovoi, N. Kustova, and J. Reichardt, “Power laws for backscattering by ice crystals of cirrus clouds,” Opt. Express 25 (19), 22 341–22 346 (2017).

Article  Google Scholar 

O. V. Sokovykh and I. V. Samokhvalov, “System integration of experimental equipment for high-altitude polarization lidar,” Opt. Atmos. Okeana 26 (10), 891–896 (2013).

Google Scholar 

A. G. Borovoi, “Light scattering by large particles: Physical optics and the shadow-forming field,” in Light Scattering Reviews8: Radiative Transfer and Light Scattering (Springer, 2013), pp. 115–138.

Google Scholar 

V. Vouk, “Projected area of convex bodies,” Nature 162 (4113), 330–331 (1948).

Article  ADS  Google Scholar 

G. M. McFarquhar and A. J. Heymsfield, “Parameterization of tropical cirrus ice crystal size distributions and implications for radiative transfer: Results from CEPEX,” J. Atmos. Sci. 54 (17), 2187–2200 (1997).

Article  ADS  Google Scholar 

URL: https://iao.ru/ru/about/resources/info/cluster. Cited January 13, 2023.

Comments (0)

No login
gif