Analysis of New Measurements of 18O-substituted Isotopic Species 16O16O18O and 16O18O16O of Ozone in the THz and Far-Infrared Ranges

S. Y. Grebenshchikov, Z. W. Qu, H. Zhu, and R. Schinke, “New theoretical investigations of the photodissociation of ozone in the Hartley, Huggins, Chappuis, and Wulf bands,” Phys. Chem. Chem. Phys. 9, 2044–2064 (2007). https://doi.org/10.1039/B701020F

Article  Google Scholar 

J. Orphal, J. Staehelin, J. Tamminen, G. Braathen, M. R. De Backer, A. Bais, D. Balis, A. Barbe, P. K. Bhartia, M. Birk, J. B. Burkholder, K. Chance, T. von Clarmann, A. Cox, D. Degenstein, R. Evans, J. M. Flaud, D. Flittner, S. Godin-Beekmann, V. Gorshelev, A. Gratien, E. Hare, C. Janssen, E. Kyrola, T. McElroy, R. McPeters, M. Pastel, M. Petersen, I. Petropavlovskikh, B. Picquet-Varrault, M. Pitts, G. Labow, M. Rotger-Languereau, T. Leblanc, C. Lerot, X. Liu, P. Moussay, A. Redondas, M. Van Roozendael, S. P. Sander, M. Schneider, A. Serdyuchenko, P. Veefkind, J. Viallon, C. Viatte, G. Wagner, M. Weber, R. I. Wielgosz, and C. Zehner, “Absorption cross-sections of ozone in the ultraviolet and visible spectral regions: Status report 2015,” J. Mol. Spectrosc. 327, 105–121 (2016). https://doi.org/10.1016/J.JMS.2016.07.007

Article  ADS  Google Scholar 

S. Vasilchenko, D. Mondelain, S. Kassi, and A. Campargue, “Predissociation and pressure dependence in the low frequency far wing of the Wulf absorption band of ozone near 1.2 μm,” J. Quant. Spectrosc. Radiat. Transfer 278, 107678 (2021). https://doi.org/10.1016/j.jqsrt.2021.107678

Article  Google Scholar 

A. Barbe, S. Mikhailenko, E. Starikova, and V. Tyuterev, “High resolution infrared spectroscopy in support of ozone atmospheric monitoring and validation of the potential energy function,” Molecules 27, 911 (2022). https://doi.org/10.3390/MOLECULES27030911

Article  Google Scholar 

M. H. Thiemens and J. E. Heidenreich, “The mass-independent fractionation of oxygen: A novel isotope effect and its possible cosmo chemical implications,” Science 219, 1073–1075 (1983).

Article  ADS  Google Scholar 

K. Mauersberger, D. Krankowsky, C. Janssen, and R. Schinke, “Assessment of the ozone isotope effect,” Adv. Atom. Mol. Optic. Phys. 50, 1–54 (2005). https://doi.org/10.1016/S1049-250X(05)80006-0

Article  ADS  Google Scholar 

Y. Q. Gao and R. A. Marcus, “Strange and unconventional isotope effects in ozone formation,” Science 293, 259–263 (2001).

Article  ADS  Google Scholar 

J. M. Carlstad and K. A. Boering, “Isotope effects and the atmosphere,” Ann. Rev. Phys. Chem. 74, 439–465 (2023). https://doi.org/10.1146/annurev-physchem-061020-053429

Article  ADS  Google Scholar 

M. Mirahmadi, J. Perez-Rios, O. Egorov, V. Tyuterev, and V. Kokoouline, “Ozone formation in ternary collisions: Theory and experiment doi,” Phys. Rev. Lett. 128 (10), 108501 (2022).https://doi.org/10.1103/PhysRevLett.128.108501reconciled

C. Janssen, J. Guenther, D. Krankowsky, and K. Mauersberger, “Temperature dependence of ozone rate coefficients and isotope fractionation in 16O–18O oxygen mixtures,” Chem. Phys. Lett. 367, 34–38 (2003).

Article  ADS  Google Scholar 

G. Guillon, P. Honvault, R. Kochanov, and V. Tyuterev, “First-principles computed rate constant for the O + O2 isotopic exchange reaction now matches experiment,” J. Phys. Chem. Lett. 9 (8), 1931–1936 (2018). doi . 9b06139https://doi.org/10.1021/acs.jpca

C. H. Yuen, D. Lapierre, F. Gatti, V. Kokoouline, and V. G. Tyuterev, “The role of ozone vibrational resonances in the isotope exchange reaction 16O16O + 18O > 18O16O + 16O: The time-dependent picture,” J. Phys. Chem. A 123 (36), 7733–7743 (2019).

Article  Google Scholar 

Y. L. Babikov, S. N. Mikhailenko, A. Barbe, and V. G. Tyuterev, “S&MPO—an information system for ozone spectroscopy on the WEB,” J. Quant. Spectrosc. Radiat. Transfer 145, 169–196 (2014). https://doi.org/10.1016/j.jqsrt.2014.04.024

Article  ADS  Google Scholar 

I. E. Gordon, L. S. Rothman, R. J. Hargreaves, R. Hashemi, E. V. Karlovets, F. M. Skinner, E. K. Conway, C. Hill, R. V. Kochanov, Y. Tan, P. Wcislo, A. A. Finenko, K. Nelson, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, A. Coustenis, B. J. Drouin, J.‑M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, E. J. Mlawer, A. V. Nikitin, V. I. Perevalov, M. Rotger, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, E. M. Adkins, A. Baker, A. Barbe, E. Cane, A. G. Csaszar, A. Dudaryonok, O. Egorov, A. J. Fleisher, H. Fleurbaey, A. Foltynowicz, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, V.-M. Horneman, X. Huang, T. Karman, J. Karns, S. Kassi, I. Kleiner, V. Kofman, F. Kwabia-Tchana, N. N. Lavrentieva, T. J. Lee, D. A. Long, A. A. Lukashevskaya, O. M. Lyulin, V. Yu. Makhnev, W. Matt, S. T. Massie, M. Melosso, S. N. Mikhailenko, D. Mondelain, H. S. P. Muller, O. V. Naumenko, A. Perrin, O. L. Polyansky, E. Raddaoui, P. L. Raston, Z. D. Reed, M. Rey, C. Richard, R. Tobias, I. Sadiek, D. W. Schwenke, E. Starikova, K. Sung, F. Tamassia, S. A. Tashkun, Auwera J. Vander, I. A. Vasilenko, A. A. Vigasin, G. L. Villanueva, B. Vispoel, G. Wagner, A. Yachmenev, and S. N. Yurchenko, “The HITRAN2020 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 277, 107949 (2022). https://doi.org/10.1016/j.jqsrt.2021.107949

Article  Google Scholar 

T. Delahaye, R. Armante, N. A. Scott, N. Jacquinet-Husson, A. Chedin, L. Crepeau, C. Crevoisier, V. Douet, A. Perrin, A. Barbe, V. Boudon, A. Campargue, L. H. Coudert, V. Ebert, J.-M. Flaud, R. R. Gamache, D. Jacquemart, A. Jolly, TchanaF. Kwabia, A. Kyuberis, G. Li, O. M. Lyulin, L. Manceron, S. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Muller, O. V. Naumenko, A. Nikitin, V. I. Perevalov, C. Richard, E. Starikova, S. A. Tashkun, Vl. G. Tyuterev, Auwera J. Vander, B. Vispoel, A. Yachmenev, and S. Yurchenko, “The 2020 edition of the GEISA spectroscopic database,” J. Mol. Spectrosc. 380, 111510 (2021). https://doi.org/10.1016/j.jms.2021.111510

Article  Google Scholar 

D. Albert, B. K. Antony, Y. A. Ba, Yu. L. Babikov, Ph. Bollard, V. Boudon, F. Delahaye, G. Del Zanna, M. S. Dimitrijevic, B. J. Drouin, M.-L. Dubernet, F. Duensing, M. Emoto, C. P. Endres, A. Z. Fazliev, J.-M. Glorian, I. E. Gordon, P. Gratier, C. Hill, D. Jevremovic, C. Joblin, D.-H. Kwon, R. V. Kochanov, E. Krishnakumar, G. Leto, P. A. Loboda, A. A. Lukashevskaya, O. M. Lyulin, B. P. Marinkovic, A. Markwick, T. Marquart, N. J. Mason, C. Mendoza, T. J. Millar, N. Moreau, S. V. Morozov, T. Moller, H. S. P. Muller, G. Mulas, I. Murakami, Yu. Pakhomov, P. Palmeri, J. Penguen, V. I. Perevalov, N. Piskunov, J. Postler, A. I. Privezentsev, P. Quinet, Yu. Ralchenko, Y.-J. Rhee, C. Richard, G. Rixon, L. S. Rothman, E. Roueff, T. Ryabchikova, S. Sahal-Brechot, P. Scheier, P. Schilke, S. Schlemmer, K. W. Smith, B. Schmitt, I. Yu. Skobelev, V. A. Sreckovic, E. Stempels, S. A. Tashkun, J. Tennyson, V. G. Tyuterev, Ch. Vastel, V. Vujciic, V. Wakelam, N. A. Walton, C. Zeippen, and C. M. Zwolf, “A decade with VAMDC: Results and ambitions,” Atoms 8, 76 (2020). https://doi.org/10.3390/atoms8040076

Article  ADS  Google Scholar 

A. Barbe, S. Mikhailenko, E. Starikova, M.-R. De Backer-Barilly, Vl. G. Tyuterev, D. Mondelain, S. Kassi, A. Campargue, C. Janssen, S. Tashkun, R. Kochanov, R. Gamache, and J. Orphal, “Ozone spectroscopy in the electronic ground state: High resolution spectra analyses and update of line parameters since 2003,” J. Quant. Spectrosc. Radiat. Transfer 130, 172–190 (2013).

Article  ADS  Google Scholar 

A. Barbe, E. Starikova, M.-R. De Backer, and Vl. G. Tyuterev, “Analyses of infrared spectra of asymmetric ozone isopotologue 16O16O18O in the range 950–3850 cm–1,” J. Quant. Spectrosc. Radiat. Transfer 218, 231–247 (2018).

Article  ADS  Google Scholar 

E. Starikova, A. Barbe, M.-R. De Backer, and V. Tyuterev, “Analysis of thirteen absorption bands of 16O18O18O ozone isotopomer in the 950–3500 cm–1 infrared spectral range,” J. Quant. Spectrosc. Radiat. Transfer 257, 107364 (2020).

Article  Google Scholar 

A. Barbe, S. Mikhailenko, E. Starikova, and Vl. Tyuterev, “Infrared spectra of 16O3 in the 900–5600 cm–1 range revisited: Empirical corrections to the S&MPO and HITRAN2020 line lists,” J. Quant. Spectrosc. Radiat. Transfer 276, 107936 (2021). https://doi.org/10.1016/j.jqsrt.2021.107936

Article  Google Scholar 

E. N. Starikova and A. Barbe, “Twelve experimental band centers of the 16O16O18O ozone isotopologue in the 3400–5600 cm–1 spectral range: Comparison with theoretical predictions from the potential energy surface,” Atmos. Ocean. Opt. 35 (2), 103–109 (2022). https://doi.org/10.1134/S1024856022020129

Article  Google Scholar 

D. Mondelain, A. Campargue, S. Kassi, A. Barbe, E. Starikova, M.-R. De Backer, and Vl. G. Tyuterev, “The CW-CRDS spectra of the 16O/18O isotopologues of ozone between 5930 and 6340 cm–1. Part 1: 16O16O18O,” J. Quant. Spectrosc. Radiat. Transfer 116, 49–66 (2013).

Article  ADS  Google Scholar 

S. Vasilchenko, A. Barbe, E. Starikova, S. Kassi, D. Mondelain, A. Campargue, and V. Tyuterev, “Detection and assignment of ozone bands near 95% of the dissociation threshold: Ultra-sensitive experiments for probing potential energy function and vibrational dynamics,” Phys. Rev. A 102 (5), 052804 (2020).

Article  ADS  Google Scholar 

S. S. Vasilchenko, S. Kassi, D. Mondelain, and A. Campargue, “High-resolution laser spectroscopy of the ozone molecule at the dissociation threshold,” Atmos. Ocean. Opt. 34 (5), 373–380 (2021).

Article  Google Scholar 

J. C. Depannemaecker and J. Bellet, “Rotational spectra of 16O3 and the five 18O isotopic species,” J. Mol. Spectrosc. 66, 106–120 (1977).

Article  ADS  Google Scholar 

C. Chiu and E. A. Cohen, “Rotational spectra of mono-18O-substituted ozones in the ν2 excited vibrational state,” J. Mol. Spectrosc. 109, 239–245 (1985).

Article  ADS  Google Scholar 

J. M. Flaud, C. Camy-Peyret, A. N’Gom, V. Malathydevi, C. P. Rinsland, and M. A. H. Smith, “The ν2 bands of 16O16O18O and 16O18O16O,” J. Mol Spectrosc. 133, 217–223 (1989).

Article  ADS  Google Scholar 

P. Roy, J. B. Brubach, M. Rouzieres, O. Pirali, L. Manceron, and Tchana F. Kwabia, “AILES: La ligne IR et THz sur rayonnement synchrotron SOLEIL,” Rev. Electricite Electronique 2, 23 (2008).

Google Scholar 

J. B. Brubach, L. Manceron, M. Rouzieres, O. Pirali, D. Balcon, Tchana F. Kwabia, V. Boudon, M. Tudorie, T. Huet, A. Cuisset, and P. Roy, “Performance of the AILES THz-IR beamline on Soleil for high resolution spectroscopy,” AIP Conf. Proc. 1214, 81–84 (2010).

Article  ADS  Google Scholar 

www.synchrotron-soleil.fr/en/beamlines/ailes. Cited September 20, 2023.

M. Faye, M. Bordessoule, B. Kanoute, J.-B. Brubach, P. Roy, and L. Manceron, “Improved mid infrared detector for high spectral or spatial resolution and synchrotron radiation use,” Rev. Sci. Inst 87, 063119 (2016).

Article  ADS  Google Scholar 

L. Manceron, A. Barbe, V. Tyuterev, B. Grouiez, J. Burgalat, M. Rotger, and P. Roy, “Far infrared spectroscopy of the ozone molecule and its isotopomers between 50 and 800 cm–1,” in Abstracts of the 15th ASA Conference (united with 16th HITRAN Conference), Reims, France, August 24–26, 2022. P. 13.

V. Tyuterev, A. Barbe, L. Manceron, B. Grouiez, S. Tashkun, J. Burgalat, and M. Rotger, “Ozone spectroscopy in the terahertz range from first high-resolution Synchrotron SOLEIL experiments combined with far-infrared measurements and ab initio intensity calculations,” Spectroch. Acta Part A (2023) (in press).

J.-J. Plateaux, L. Regalia, C. Boussin, and A. Barbe, “Multispectrum fitting technique for data recorded by Fourier transform spectrometer: Application to N2O and CH3D,” J. Quant. Spectrosc. Radiat. Transfer 68, 507–520 (2001).

Article  ADS 

Comments (0)

No login
gif