R. E. Neale, P. W. Barnes, T. M. Robson, P. J. Neale, C. E. Williamson, R. G. Zepp, S. R. Wilson, S. Madronich, A. L. Andrady, A. M. Heikkila, G. H. Bernhard, A. F. Bais, P. J. Aucamp, A. T. Banaszak, J. F. Bornman, L. S. Bruckman, S. N. Byrne, B. Foereid, D. P. Hader, L. M. Hollestein, W. C. Hou, S. Hylander, M. A. K. Jansen, A. R. Klekociuk, J. B. Liley, J. Longstreth, R. M. Lucas, J. Martinez-Abaigar, K. McNeill, C. M. Olsen, K. K. Pandey, L. E. Rhodes, S. A. Robinson, K. C. Rose, T. Schikowski, K. R. Solomon, B. Sulzberger, J. E. Ukpebor, Q. W. Wang, S. Wangberg, C. C. White, S. Yazar, A. R. Young, P. J. Young, L. Zhu, and M. Zhu, “Environmental effects of stratospheric ozone depletion, UV radiation, and interactions with climate change: UNEP environmental effects assessment panel, update 2020,” Photochem. Photobiol. Sci. 20 (1), 1–67 (2021). https://doi.org/10.1007/S43630-020-00001-X
S. Yook, D. W. J. Thompson, and S. Solomon, “Climate impacts and potential drivers of the unprecedented antarctic ozone holes of 2020 and 2021,” Geophys. Rev. Lett. 49 (10), e2022GL098064 (2022). https://doi.org/10.1029/2022GL098064
J. L. Grenfell, “A review of exoplanetary biosignatures,” Phys. Rep. 713, 1–17 (2017). https://doi.org/10.1016/J.PHYSREP.2017.08.003
Article ADS MathSciNet Google Scholar
S. Solomon, “The discovery of the Antarctic ozone hole,” Nat 575 (7781), 46–47 (2019). https://doi.org/10.1038/d41586-019-02837-5
X. Fang, J. A. Pyle, M. P. Chipperfield, J. S. Daniel, S. Park, and R. G. Prinn, “Challenges for the recovery of the ozone layer,” Nat. Geosci. 12 (8), 592–596 (2019). https://doi.org/10.1038/s41561-019-0422-7
Z. Wang, P. Ma, L. Zhang, H. Chen, S. Zhao, W. Zhou, C. Chen, Y. Zhang, C. Zhou, H. Mao, Y. Wang, Y. Wang, L. Zhang, A. Zhao, G. Weng, and K. Hu, “Systematics of atmospheric environment monitoring in China via satellite remote sensing,” Air Qual. Atmos. Heal. 14 (2), 157–169 (2021). https://doi.org/10.1007/S11869-020-00922-7/TABLES/2
N. Colombi, K. Miyazaki, K. W. Bowman, J. L. Neu, and D. J. Jacob, “A new methodology for inferring surface ozone from multispectral satellite measurements,” Environ. Res. Lett. 16 (10), 105005 (2021). https://doi.org/10.1088/1748-9326/AC243D
J. Cuesta, L. Costantino, M. Beekmann, G. Siour, L. Menut, B. Bessagnet, T. C. Landi, G. Dufour, and M. Eremenko, “Ozone pollution during the COVID-19 lockdown in the spring of 2020 over Europe, analysed from satellite observations, in situ measurements, and models,” Atmos. Chem. Phys. 22 (7), 4471–4489 (2022). https://doi.org/10.5194/ACP-22-4471-2022
M. Friedel, G. Chiodo, A. Stenke, D. I. V. Domeisen, S. Fueglistaler, J. G. Anet, and T. Peter, “Springtime Arctic ozone depletion forces Northern Hemisphere climate anomalies,” Nat. Geosci. 15 (7), 541–547 (2022). https://doi.org/10.1038/s41561-022-00974-7
V. V. Andreev, M. Yu. Arshinov, B. D. Belan, S. B. Belan, D. K. Davydov, V. I. Demin, N. V. Dudorova, N. F. Elanskii, G. S. Zhamsueva, A. S. Zayakhanov, R. V. Ivanov, G. A. Ivlev, A. V. Kozlov, L. V. Konoval’tseva, M. Yu. Korenskii, S. N. Kotel’nikov, I. N. Kuznetsova, V. A. Lapchenko, E. A. Lezina, V. A. Obolkin, O. V. Postylyakov, V. L. Potemkin, D. E. Savkin, E. G. Semutnikova, I. A. Senik, E. V. Stepanov, G. N. Tolmachev, A. V. Fofonov, T. V. Khodzher, I. V. Chelibanov, V. P. Chelibanov, V. V. Shirotov, and K. A. Shukurov, “Tropospheric ozone concentration in Russia in 2022,” Atmos. Ocean. Opt. 36 (6), 741 (2023).
J. Orphal, J. Staehelin, J. Tamminen, G. Braathen, M. R. De Backer, A. Bais, D. Balis, A. Barbe, P. K. Bhartia, M. Birk, J. B. Burkholder, K. Chance, T. von Clarmann, A. Cox, D. Degenstein, R. Evans, J. M. Flaud, D. Flittner, S. Godin-Beekmann, V. Gorshelev, A. Gratien, E. Hare, C. Janssen, E. Kyrola, T. McElroy, R. McPeters, M. Pastel, M. Petersen, I. Petropavlovskikh, B. Picquet-Varrault, M. Pitts, G. Labow, M. Rotger-Languereau, T. Leblanc, C. Lerot, X. Liu, P. Moussay, A. Redondas, M. Van Roozendael, S. P. Sander, M. Schneider, A. Serdyuchenko, P. Veefkind, J. Viallon, C. Viatte, G. Wagner, M. Weber, R. I. Wielgosz, and C. Zehner, “Absorption cross-sections of ozone in the ultraviolet and visible spectral regions: Status report 2015,” J. Mol. Spectrosc. 327, 105–121 (2016). https://doi.org/10.1016/J.JMS.2016.07.007
N. Glatthor, T. Von Clarmann, G. P. Stiller, M. Kiefer, A. Laeng, B. M. Dinelli, G. Wetzel, and J. Orphal, “Differences in ozone retrieval in MIPAS channels A and AB: A spectroscopic issue,” Atmos. Meas. Tech. 11 (8), 4707–4723 (2018). https://doi.org/10.5194/AMT-11-4707-2018
C. Janssen, A. Barbe, C. Boursier, H. Elandaloussi, M.-R. De Backer, P. Jeseck, R. Miri, D. Koshelev, P. Marie-Jeanne, C. Rouille, Y. Te, D. Jacquemart, and V. Tyuterev, “New spectroscopic data for atmospheric remote sensing of ozone from the ultraviolet to the mid-infrared (MIR),” AGUFM 2021, A33 (2021).
J. M. Flaud and R. Bacis, “The ozone molecule: Infrared and microwave spectroscopy,” Spectrochim. Acta Part A 54 (1), 3–16 (1998). https://doi.org/10.1016/S1386-1425(97)00214-X
R. Bacis, A. J. Bouvier, and J. M. Flaud, “The ozone molecule: Electronic spectroscopy,” Spectrochim. Acta Part A 54 (1), 17–34 (1998). https://doi.org/10.1016/S1386-1425(97)00259-X
S. Y. Grebenshchikov, Z. W. Qu, H. Zhu, and R. Schinke, “New theoretical investigations of the photodissociation of ozone in the Hartley, Huggins, Chappuis, and Wulf bands,” Phys. Chem. Chem. Phys. 9 (17), 2044–2064 (2007). https://doi.org/10.1039/B701020F
B. J. Drouin, T. J. Crawford, and S. Yu, “Validation of ozone intensities at 10 μm with THz spectrometry,” J. Quant. Spectrosc. Radiat. Transfer 203, 282–292 (2017). https://doi.org/10.1016/J.JQSRT.2017.06.035
M. Birk, G. Wagner, I. E. Gordon, and B. J. Drouin, “Ozone intensities in the rotational bands,” J. Quant. Spectrosc. Radiat. Transfer 226, 60–65 (2019). https://doi.org/10.1016/J.JQSRT.2019.01.004
A. Barbe, S. Mikhailenko, E. Starikova, and V. Tyuterev, “High resolution infrared spectroscopy in support of ozone atmospheric monitoring and validation of the potential energy function,” Molecules 27 (3), 911 (2022). https://doi.org/10.3390/MOLECULES27030911
D. Jacquemart, C. Boursier, H. Elandaloussi, P. Jeseck, Y. Te, and C. Janssen, “Multi-spectral investigation of ozone: Part II. Line intensity measurements at one percent accuracy around 5 μm and 10 μm,” J. Quant. Spectrosc. Radiat. Transfer 279, 108050 (2022). https://doi.org/10.1016/J.JQSRT.2021.108050
V. G. Tyuterev, A. Barbe, D. Jacquemart, C. Janssen, S. N. Mikhailenko, and E. N. Starikova, “Ab initio predictions and laboratory validation for consistent ozone intensities in the MW, 10 and 5 μm ranges,” J. Chem. Phys. 150 (18), 184303 (2019). https://doi.org/10.1063/1.5089134
G. C. Toon, Ozone Spectroscopy Evaluation Update. https://mark4sun.jpl.nasa.gov/report/O3_Spectroscopy_Eval_2021_07_14.pdf. Cited October 11, 2023.
V. G. Tyuterev, R. V. Kochanov, and S. A. Tashkun, “Accurate ab initio dipole moment surfaces of ozone: First principle intensity predictions for rotationally resolved spectra in a large range of overtone and combination bands,” J. Chem. Phys. 146, 064304 (2017). https://doi.org/10.1063/1.4973977
S. Vasilchenko, A. Barbe, E. Starikova, S. Kassi, D. Mondelain, A. Campargue, and V. Tyuterev, “Detection and assignment of ozone bands near 95% of the dissociation threshold: Ultrasensitive experiments for probing potential energy function and vibrational dynamics,” Phys. Rev. A: 102 (5), 052804 (2020). https://doi.org/10.1103/PhysRevA.102.052804
S. S. Vasilchenko, S. Kassi, D. Mondelain, and A. Campargue, “High-resolution laser spectroscopy of the ozone molecule at the dissociation threshold,” Atmos. Ocean. Opt. 34 (5), 373–380 (2021).
F. Holka, P. G. Szalay, T. Muller, and V. G. Tyuterev, “Toward an improved ground state potential energy surface of ozone,” J. Phys. Chem. A 114 (36), 9927–9935 (2010). https://doi.org/10.1021/jp104182q
B. Ruscic, Unpublished results obtained from active thermochemical tables (ATcT) based on the Core (Argonne), Thermochemical Network version 110 (2010).
O. Egorov, R. V. Kochanov, V. Tyuterev, and V. Kokoouline, “Long-range ab initio potential energy surface for the ground electronic state of the ozone molecule with the accurate dissociation asymptote,” Chem. Phys. Lett. 830, 140819 (2023). https://doi.org/10.1016/J.CPLETT.2023.140819
D. E. Freeman, K. Yoshino, J. R. Esmond, and W. H. Parkinson, “High resolution absorption cross-section measurements of ozone at 195 K in the wavelength region 240–350 nm,” Planet. Space Sci. 32 (2), 239–248 (1984). https://doi.org/10.1016/0032-0633(84)90158-2
K. Bogumil, J. Orphal, T. Homann, S. Voigt, P. Spietz, O. C. Fleischmann, A. Vogel, M. Hartmann, H. Kromminga, H. Bovensmann, J. Frerick, and J. P. Burrows, “Measurements of molecular absorption spectra with the SCIAMACHY pre-flight model: Instrument characterization and reference data for atmospheric remote-sensing in the 230–2380 nm region,” J. Photochem. Photobiol. A. Chem. 157 (2–3), 167–184 (2003). https://doi.org/10.1016/S1010-6030(03)00062-5
O. Egorov, R. R. Valiev, T. Kurten, and V. Tyuterev, “Franck–Condon factors and vibronic patterns of singlet-triplet transitions of 16O3 molecule falling near the dissociation threshold and above,” J. Quant. Spectrosc. Radiat. Transfer 273, 107834 (2021). https://doi.org/10.1016/J.JQSRT.2021.107834
D. Daumont, J. Brion, J. Charbonnier, and J. Malicet, “Ozone UV spectroscopy I: Absorption cross-sections at room temperature,” J. Atmos. Chem. 15 (2), 145–155 (1992). https://doi.org/10.1007/BF00053756/METRICS
J. Brion, A. Chakir, D. Daumont, J. Malicet, and C. Parisse, “High-resolution laboratory absorption cross section of O3. Temperature effect,” Chem. Phys. Lett. 213 (5–6), 610–612 (1993). https://doi.org/10.1016/0009-2614(93)89169-I
Comments (0)