Experimental Study and Simulation of Singlet-Triplet Rovibronic Ozone Bands in the 11 900–12 800 cm−1 Region

R. E. Neale, P. W. Barnes, T. M. Robson, P. J. Neale, C. E. Williamson, R. G. Zepp, S. R. Wilson, S. Madronich, A. L. Andrady, A. M. Heikkila, G. H. Bernhard, A. F. Bais, P. J. Aucamp, A. T. Banaszak, J. F. Bornman, L. S. Bruckman, S. N. Byrne, B. Foereid, D. P. Hader, L. M. Hollestein, W. C. Hou, S. Hylander, M. A. K. Jansen, A. R. Klekociuk, J. B. Liley, J. Longstreth, R. M. Lucas, J. Martinez-Abaigar, K. McNeill, C. M. Olsen, K. K. Pandey, L. E. Rhodes, S. A. Robinson, K. C. Rose, T. Schikowski, K. R. Solomon, B. Sulzberger, J. E. Ukpebor, Q. W. Wang, S. Wangberg, C. C. White, S. Yazar, A. R. Young, P. J. Young, L. Zhu, and M. Zhu, “Environmental effects of stratospheric ozone depletion, UV radiation, and interactions with climate change: UNEP environmental effects assessment panel, update 2020,” Photochem. Photobiol. Sci. 20 (1), 1–67 (2021). https://doi.org/10.1007/S43630-020-00001-X

Article  Google Scholar 

S. Yook, D. W. J. Thompson, and S. Solomon, “Climate impacts and potential drivers of the unprecedented antarctic ozone holes of 2020 and 2021,” Geophys. Rev. Lett. 49 (10), e2022GL098064 (2022). https://doi.org/10.1029/2022GL098064

J. L. Grenfell, “A review of exoplanetary biosignatures,” Phys. Rep. 713, 1–17 (2017). https://doi.org/10.1016/J.PHYSREP.2017.08.003

Article  ADS  MathSciNet  Google Scholar 

S. Solomon, “The discovery of the Antarctic ozone hole,” Nat 575 (7781), 46–47 (2019). https://doi.org/10.1038/d41586-019-02837-5

Article  ADS  Google Scholar 

X. Fang, J. A. Pyle, M. P. Chipperfield, J. S. Daniel, S. Park, and R. G. Prinn, “Challenges for the recovery of the ozone layer,” Nat. Geosci. 12 (8), 592–596 (2019). https://doi.org/10.1038/s41561-019-0422-7

Article  ADS  Google Scholar 

Z. Wang, P. Ma, L. Zhang, H. Chen, S. Zhao, W. Zhou, C. Chen, Y. Zhang, C. Zhou, H. Mao, Y. Wang, Y. Wang, L. Zhang, A. Zhao, G. Weng, and K. Hu, “Systematics of atmospheric environment monitoring in China via satellite remote sensing,” Air Qual. Atmos. Heal. 14 (2), 157–169 (2021). https://doi.org/10.1007/S11869-020-00922-7/TABLES/2

Article  Google Scholar 

N. Colombi, K. Miyazaki, K. W. Bowman, J. L. Neu, and D. J. Jacob, “A new methodology for inferring surface ozone from multispectral satellite measurements,” Environ. Res. Lett. 16 (10), 105005 (2021). https://doi.org/10.1088/1748-9326/AC243D

Article  ADS  Google Scholar 

J. Cuesta, L. Costantino, M. Beekmann, G. Siour, L. Menut, B. Bessagnet, T. C. Landi, G. Dufour, and M. Eremenko, “Ozone pollution during the COVID-19 lockdown in the spring of 2020 over Europe, analysed from satellite observations, in situ measurements, and models,” Atmos. Chem. Phys. 22 (7), 4471–4489 (2022). https://doi.org/10.5194/ACP-22-4471-2022

Article  ADS  Google Scholar 

M. Friedel, G. Chiodo, A. Stenke, D. I. V. Domeisen, S. Fueglistaler, J. G. Anet, and T. Peter, “Springtime Arctic ozone depletion forces Northern Hemisphere climate anomalies,” Nat. Geosci. 15 (7), 541–547 (2022). https://doi.org/10.1038/s41561-022-00974-7

Article  ADS  Google Scholar 

V. V. Andreev, M. Yu. Arshinov, B. D. Belan, S. B. Belan, D. K. Davydov, V. I. Demin, N. V. Dudorova, N. F. Elanskii, G. S. Zhamsueva, A. S. Zayakhanov, R. V. Ivanov, G. A. Ivlev, A. V. Kozlov, L. V. Konoval’tseva, M. Yu. Korenskii, S. N. Kotel’nikov, I. N. Kuznetsova, V. A. Lapchenko, E. A. Lezina, V. A. Obolkin, O. V. Postylyakov, V. L. Potemkin, D. E. Savkin, E. G. Semutnikova, I. A. Senik, E. V. Stepanov, G. N. Tolmachev, A. V. Fofonov, T. V. Khodzher, I. V. Chelibanov, V. P. Chelibanov, V. V. Shirotov, and K. A. Shukurov, “Tropospheric ozone concentration in Russia in 2022,” Atmos. Ocean. Opt. 36 (6), 741 (2023).

Article  Google Scholar 

J. Orphal, J. Staehelin, J. Tamminen, G. Braathen, M. R. De Backer, A. Bais, D. Balis, A. Barbe, P. K. Bhartia, M. Birk, J. B. Burkholder, K. Chance, T. von Clarmann, A. Cox, D. Degenstein, R. Evans, J. M. Flaud, D. Flittner, S. Godin-Beekmann, V. Gorshelev, A. Gratien, E. Hare, C. Janssen, E. Kyrola, T. McElroy, R. McPeters, M. Pastel, M. Petersen, I. Petropavlovskikh, B. Picquet-Varrault, M. Pitts, G. Labow, M. Rotger-Languereau, T. Leblanc, C. Lerot, X. Liu, P. Moussay, A. Redondas, M. Van Roozendael, S. P. Sander, M. Schneider, A. Serdyuchenko, P. Veefkind, J. Viallon, C. Viatte, G. Wagner, M. Weber, R. I. Wielgosz, and C. Zehner, “Absorption cross-sections of ozone in the ultraviolet and visible spectral regions: Status report 2015,” J. Mol. Spectrosc. 327, 105–121 (2016). https://doi.org/10.1016/J.JMS.2016.07.007

Article  ADS  Google Scholar 

N. Glatthor, T. Von Clarmann, G. P. Stiller, M. Kiefer, A. Laeng, B. M. Dinelli, G. Wetzel, and J. Orphal, “Differences in ozone retrieval in MIPAS channels A and AB: A spectroscopic issue,” Atmos. Meas. Tech. 11 (8), 4707–4723 (2018). https://doi.org/10.5194/AMT-11-4707-2018

Article  Google Scholar 

C. Janssen, A. Barbe, C. Boursier, H. Elandaloussi, M.-R. De Backer, P. Jeseck, R. Miri, D. Koshelev, P. Marie-Jeanne, C. Rouille, Y. Te, D. Jacquemart, and V. Tyuterev, “New spectroscopic data for atmospheric remote sensing of ozone from the ultraviolet to the mid-infrared (MIR),” AGUFM 2021, A33 (2021).

Google Scholar 

J. M. Flaud and R. Bacis, “The ozone molecule: Infrared and microwave spectroscopy,” Spectrochim. Acta Part A 54 (1), 3–16 (1998). https://doi.org/10.1016/S1386-1425(97)00214-X

Article  ADS  Google Scholar 

R. Bacis, A. J. Bouvier, and J. M. Flaud, “The ozone molecule: Electronic spectroscopy,” Spectrochim. Acta Part A 54 (1), 17–34 (1998). https://doi.org/10.1016/S1386-1425(97)00259-X

Article  ADS  Google Scholar 

S. Y. Grebenshchikov, Z. W. Qu, H. Zhu, and R. Schinke, “New theoretical investigations of the photodissociation of ozone in the Hartley, Huggins, Chappuis, and Wulf bands,” Phys. Chem. Chem. Phys. 9 (17), 2044–2064 (2007). https://doi.org/10.1039/B701020F

Article  Google Scholar 

B. J. Drouin, T. J. Crawford, and S. Yu, “Validation of ozone intensities at 10 μm with THz spectrometry,” J. Quant. Spectrosc. Radiat. Transfer 203, 282–292 (2017). https://doi.org/10.1016/J.JQSRT.2017.06.035

Article  ADS  Google Scholar 

M. Birk, G. Wagner, I. E. Gordon, and B. J. Drouin, “Ozone intensities in the rotational bands,” J. Quant. Spectrosc. Radiat. Transfer 226, 60–65 (2019). https://doi.org/10.1016/J.JQSRT.2019.01.004

Article  ADS  Google Scholar 

A. Barbe, S. Mikhailenko, E. Starikova, and V. Tyuterev, “High resolution infrared spectroscopy in support of ozone atmospheric monitoring and validation of the potential energy function,” Molecules 27 (3), 911 (2022). https://doi.org/10.3390/MOLECULES27030911

Article  Google Scholar 

D. Jacquemart, C. Boursier, H. Elandaloussi, P. Jeseck, Y. Te, and C. Janssen, “Multi-spectral investigation of ozone: Part II. Line intensity measurements at one percent accuracy around 5 μm and 10 μm,” J. Quant. Spectrosc. Radiat. Transfer 279, 108050 (2022). https://doi.org/10.1016/J.JQSRT.2021.108050

Article  Google Scholar 

V. G. Tyuterev, A. Barbe, D. Jacquemart, C. Janssen, S. N. Mikhailenko, and E. N. Starikova, “Ab initio predictions and laboratory validation for consistent ozone intensities in the MW, 10 and 5 μm ranges,” J. Chem. Phys. 150 (18), 184303 (2019). https://doi.org/10.1063/1.5089134

Article  ADS  Google Scholar 

G. C. Toon, Ozone Spectroscopy Evaluation Update. https://mark4sun.jpl.nasa.gov/report/O3_Spectroscopy_Eval_2021_07_14.pdf. Cited October 11, 2023.

V. G. Tyuterev, R. V. Kochanov, and S. A. Tashkun, “Accurate ab initio dipole moment surfaces of ozone: First principle intensity predictions for rotationally resolved spectra in a large range of overtone and combination bands,” J. Chem. Phys. 146, 064304 (2017). https://doi.org/10.1063/1.4973977

Article  ADS  Google Scholar 

S. Vasilchenko, A. Barbe, E. Starikova, S. Kassi, D. Mondelain, A. Campargue, and V. Tyuterev, “Detection and assignment of ozone bands near 95% of the dissociation threshold: Ultrasensitive experiments for probing potential energy function and vibrational dynamics,” Phys. Rev. A: 102 (5), 052804 (2020). https://doi.org/10.1103/PhysRevA.102.052804

Article  ADS  Google Scholar 

S. S. Vasilchenko, S. Kassi, D. Mondelain, and A. Campargue, “High-resolution laser spectroscopy of the ozone molecule at the dissociation threshold,” Atmos. Ocean. Opt. 34 (5), 373–380 (2021).

Article  Google Scholar 

F. Holka, P. G. Szalay, T. Muller, and V. G. Tyuterev, “Toward an improved ground state potential energy surface of ozone,” J. Phys. Chem. A 114 (36), 9927–9935 (2010). https://doi.org/10.1021/jp104182q

Article  Google Scholar 

B. Ruscic, Unpublished results obtained from active thermochemical tables (ATcT) based on the Core (Argonne), Thermochemical Network version 110 (2010).

O. Egorov, R. V. Kochanov, V. Tyuterev, and V. Kokoouline, “Long-range ab initio potential energy surface for the ground electronic state of the ozone molecule with the accurate dissociation asymptote,” Chem. Phys. Lett. 830, 140819 (2023). https://doi.org/10.1016/J.CPLETT.2023.140819

Article  Google Scholar 

D. E. Freeman, K. Yoshino, J. R. Esmond, and W. H. Parkinson, “High resolution absorption cross-section measurements of ozone at 195 K in the wavelength region 240–350 nm,” Planet. Space Sci. 32 (2), 239–248 (1984). https://doi.org/10.1016/0032-0633(84)90158-2

Article  ADS  Google Scholar 

K. Bogumil, J. Orphal, T. Homann, S. Voigt, P. Spietz, O. C. Fleischmann, A. Vogel, M. Hartmann, H. Kromminga, H. Bovensmann, J. Frerick, and J. P. Burrows, “Measurements of molecular absorption spectra with the SCIAMACHY pre-flight model: Instrument characterization and reference data for atmospheric remote-sensing in the 230–2380 nm region,” J. Photochem. Photobiol. A. Chem. 157 (2–3), 167–184 (2003). https://doi.org/10.1016/S1010-6030(03)00062-5

Article  Google Scholar 

O. Egorov, R. R. Valiev, T. Kurten, and V. Tyuterev, “Franck–Condon factors and vibronic patterns of singlet-triplet transitions of 16O3 molecule falling near the dissociation threshold and above,” J. Quant. Spectrosc. Radiat. Transfer 273, 107834 (2021). https://doi.org/10.1016/J.JQSRT.2021.107834

Article  Google Scholar 

D. Daumont, J. Brion, J. Charbonnier, and J. Malicet, “Ozone UV spectroscopy I: Absorption cross-sections at room temperature,” J. Atmos. Chem. 15 (2), 145–155 (1992). https://doi.org/10.1007/BF00053756/METRICS

Article  Google Scholar 

J. Brion, A. Chakir, D. Daumont, J. Malicet, and C. Parisse, “High-resolution laboratory absorption cross section of O3. Temperature effect,” Chem. Phys. Lett. 213 (5–6), 610–612 (1993). https://doi.org/10.1016/0009-2614(93)89169-I

Article  ADS 

Comments (0)

No login
gif