Abd El-Rady TK, Tahoun AM, Abdin M, Amin HF (2023) Effect of different hydrolysis methods on composition and functional properties of fish protein hydrolysate obtained from bigeye tuna waste. Int J Food Sci Technol 58(12):6552–6562. https://doi.org/10.1111/ijfs.16769
Abraha B (2017) Production of fish protein hydrolysate from Silver Catfish (Arius thalassinus). MOJ Food Process Technol 5(4). https://doi.org/10.15406/mojfpt.2017.05.00132
Amarasiri RPGSK, Hyun J, Lee S-W, Kim J, Jeon Y-J, Lee J-S (2023) Alcalase-assisted Mytilus edulis Hydrolysate: A Nutritional Approach for Recovery from muscle atrophy. Mar Drugs 21(12):623. https://doi.org/10.3390/md21120623
Article CAS PubMed PubMed Central Google Scholar
BALÇIK MISIR G (2022) Novel utilization of Fish By-Products and wastes: protein hydrolysates. Acta Aquatica Turc 18(2):283–294. https://doi.org/10.22392/actaquatr.1031442
Balogun JA (2023) The Fundamentals, Misuse and Abuses of Bibliometrics. In Health Research in Nigeria (pp. 11–56). Springer Nature Singapore. https://doi.org/10.1007/978-981-19-7097-9_2
Bjørlie M, Yesiltas B, García-Moreno PJ, Espejo-Carpio FJ, Rahmani-Manglano NE, Guadix EM, Jafarpour A, Hansen EB, Marcatili P, Overgaard MT, Gregersen Echers S, Jacobsen C (2023) Bioinformatically predicted emulsifying peptides and potato protein hydrolysate improves the oxidative stability of microencapsulated fish oil. Food Chem Adv 3:100441. https://doi.org/10.1016/j.focha.2023.100441
Bøgwald I, Østbye TKK, Pedersen AM, Rønning SB, Dias J, Eilertsen KE, Wubshet SG (2023) Calanus finmarchicus hydrolysate improves growth performance in feeding trial with European sea bass juveniles and increases skeletal muscle growth in cell studies. Sci Rep 13(1). https://doi.org/10.1038/s41598-023-38970-5
Cai S-Y, Wang Y-M, Zhao Y-Q, Chi C-F, Wang B (2019) Cytoprotective effect of antioxidant pentapeptides from the protein hydrolysate of swim bladders of Miiuy Croaker (Miichthys miiuy) against H2O2-Mediated human umbilical vein endothelial cell (HUVEC) Injury. Int J Mol Sci 20(21):5425. https://doi.org/10.3390/ijms20215425
Article CAS PubMed PubMed Central Google Scholar
Chalamaiah M, Keskin Ulug S, Hong H, Wu J (2019) Regulatory requirements of bioactive peptides (protein hydrolysates) from food proteins. In Journal of Functional Foods (Vol. 58, pp. 123–129). Elsevier Ltd. https://doi.org/10.1016/j.jff.2019.04.050
Chen J, Ryu B, Zhang Y, Liang P, Li C, Zhou C, Yang P, Hong P, Qian Z (2020) Comparison of an angiotensin-I‐converting enzyme inhibitory peptide from tilapia (Oreochromis niloticus) with captopril: inhibition kinetics, in vivo effect, simulated gastrointestinal digestion and a molecular docking study. J Sci Food Agric 100(1):315–324. https://doi.org/10.1002/jsfa.10041
Article CAS PubMed Google Scholar
Daskalaki MG, Axarlis K, Aspevik T, Orfanakis M, Kolliniati O, Lapi I, Tzardi M, Dermitzaki E, Venihaki M, Kousoulaki K, Tsatsanis C (2021) Fish Sidestream-Derived protein hydrolysates suppress DSS-Induced colitis by modulating intestinal inflammation in mice. Mar Drugs 19(6):312. https://doi.org/10.3390/md19060312
Article CAS PubMed PubMed Central Google Scholar
de la Fuente B, Aspevik T, Barba FJ, Kousoulaki K, Berrada H (2023) Mineral Bioaccessibility and antioxidant capacity of protein hydrolysates from Salmon (Salmo salar) and mackerel (Scomber scombrus) Backbones and heads. Mar Drugs 21(5):294. https://doi.org/10.3390/md21050294
Article CAS PubMed PubMed Central Google Scholar
de Silva D, Halken S, Singh C, Muraro A, Angier E, Arasi S, Arshad H, Beyer K, Boyle R, du Toit G, Eigenmann P, Grimshaw K, Hoest A, Jones C, Khaleva E, Lack G, Szajewska H, Venter C, Verhasselt V, Roberts G (2020) Preventing food allergy in infancy and childhood: systematic review of randomised controlled trials. Pediatr Allergy Immunol 31(7):813–826. https://doi.org/10.1111/pai.13273
Dinakarkumar Y, Krishnamoorthy S, Margavelu G, Ramakrishnan G, Chandran M (2022) Production and characterization of fish protein hydrolysate: effective utilization of trawl by-catch. Food Chem Adv 1. https://doi.org/10.1016/j.focha.2022.100138
Ding Y, Yan C, Dai W, Wang Y, Liu S, Zheng R, Zhou X (2023) Flavor improving effects of cysteine in xylose–glycine–fish waste protein hydrolysates (FPHs) Maillard reaction system. Bioresources Bioprocess 10(1). https://doi.org/10.1186/s40643-023-00714-8
do Alves N, dos Santos R, Almeida JRS, da Silva FLC (2023) F. A. P., & da Silva Araújo, Í. B. Use of Protein By-Products Obtained from Aquatic Organisms as Bioactive Compounds: A Bibliometric Review. Food Reviews International, 1–20. https://doi.org/10.1080/87559129.2023.2278841
Egerton S, Wan A, Murphy K, Collins F, Ahern G, Sugrue I, Busca K, Egan F, Muller N, Whooley J, McGinnity P, Culloty S, Ross RP, Stanton C (2020) Replacing fishmeal with plant protein in Atlantic salmon (Salmo salar) diets by supplementation with fish protein hydrolysate. Sci Rep 10(1):4194. https://doi.org/10.1038/s41598-020-60325-7
Article CAS PubMed PubMed Central Google Scholar
Fan Z, Wu D, Li J, Zhang Y, Cui Z, Li T, Zheng X, Liu H, Wang L, Li H (2022) Assessment of Fish Protein hydrolysates in Juvenile Largemouth Bass (Micropterus salmoides) diets: Effect on Growth, intestinal antioxidant status, immunity, and Microflora. Front Nutr 9. https://doi.org/10.3389/fnut.2022.816341
Gao R, Shen Y, Shu W, Jin W, Bai F, Wang J, Zhang Y, El-Seedi H, Sun Q, Yuan L (2020) Sturgeon hydrolysates alleviate DSS-induced colon colitis in mice by modulating NF-κB, MAPK, and microbiota composition. Food Funct 11(8):6987–6999. https://doi.org/10.1039/C9FO02772F
Article CAS PubMed Google Scholar
Gao R, Yu Q, Shen Y, Chu Q, Chen G, Fen S, Yang M, Yuan L, McClements DJ, Sun Q (2021) Production, bioactive properties, and potential applications of fish protein hydrolysates: developments and challenges. Trends in Food Science and Technology, vol 110. Elsevier Ltd, pp 687–699. https://doi.org/10.1016/j.tifs.2021.02.031
García-Santiago X, Franco‐Uría A, Antelo LT, Vázquez JA, Pérez‐Martín R, Moreira MT, Feijoo G (2021) Eco‐efficiency of a marine biorefinery for valorization of cartilaginous fish biomass. J Ind Ecol 25(3):789–801. https://doi.org/10.1111/jiec.13066
Gómez-Guillén MC, Pérez-García S, Alemán A, Vázquez JA, Montero MP (2022) The role of the drying method on fish oil entrapment in a fish muscle protein ̶ κ-carrageenan ̶ fish protein hydrolysate wall matrix and the properties of colloidal dispersions. Food Hydrocolloids 131:107799. https://doi.org/10.1016/j.foodhyd.2022.107799
Gómez-Guillén MC, Pérez-García S, Alemán A, López-Caballero ME, Sotelo CG, Montero MP (2023) Development of a ready-to-eat Fish Product enriched with Fish Oil Entrapped in a κ-Carrageenan Egg White Fish Protein Hydrolysate Dry Powder. Foods 12(11):2272. https://doi.org/10.3390/foods12112272
Article CAS PubMed PubMed Central Google Scholar
Gui M, Gao L, Rao L, Li P, Zhang Y, Han J, Li J (2022) Bioactive peptides identified from enzymatic hydrolysates of sturgeon skin. J Sci Food Agric 102(5):1948–1957. https://doi.org/10.1002/jsfa.11532
Article CAS PubMed Google Scholar
Hashem AMA, Venmarath A, Kudre TG (2023) Preparation, purification, and identification of novel antioxidant peptides from red-bellied pacu (Piaractus brachypomus) fish meat protein hydrolysate. Food Sci Biotechnol 32(14):2057–2068. https://doi.org/10.1007/s10068-023-01316-y
Article CAS PubMed PubMed Central Google Scholar
He W, Su G, Sun-Waterhouse D, Waterhouse GIN, Zhao M, Liu Y (2019) In vivo anti-hyperuricemic and xanthine oxidase inhibitory properties of tuna protein hydrolysates and its isolated fractions. Food Chem 272:453–461. https://doi.org/10.1016/j.foodchem.2018.08.057
Article CAS PubMed Google Scholar
Henriques A, Vázquez JA, Valcarcel J, Mendes R, Bandarra NM, Pires C (2021) Characterization of protein hydrolysates from Fish discards and By-Products from the North-West Spain Fishing Fleet as potential sources of bioactive peptides. Mar Drugs 19(6):338. https://doi.org/10.3390/md19060338
Article CAS PubMed PubMed Central Google Scholar
Herault M, Gunathilaka BE, Fournier V, Le Bris H, Lee KJ, Sadoul B (2023) Aquatic product hydrolysates increase rearing performance in red seabream (Pagrus major), fed a low fish meal diet, in both controlled and stressed conditions: from growth to stress responses. Aquaculture 576. https://doi.org/10.1016/j.aquaculture.2023.739830
Himaya SWA, Ngo D-H, Ryu B, Kim S-K (2012) An active peptide purified from gastrointestinal enzyme hydrolysate of Pacific Cod skin gelatin attenuates angiotensin-1 converting enzyme (ACE) activity and cellular oxidative stress. Food Chem 132(4):1872–1882. https://doi.org/10.1016/j.foodchem.2011.12.020
Honrado A, Ardila P, Leciñena P, Beltrán JA, Calanche JB (2023) Transforming ‘Bonito Del Norte’ Tuna By-Products into functional ingredients for nutritional enhancement of cereal-based foods. Foods 12(24):4437. https://doi.org/10.3390/foods12244437
Article CAS PubMed PubMed Central Google Scholar
Hu X-M, Wang Y-M, Zhao Y-Q, Chi C-F, Wang B (2020) Antioxidant peptides from the protein hydrolysate of Monkfish (Lophius litulon) muscle: purification, identification, and cytoprotective function on HepG2 cells damage by H2O2. Mar Drugs 18(3):153. https://doi.org/10.3390/md18030153
Article CAS PubMed PubMed Central Google Scholar
Hu Y-D, Xi Q-H, Kong J, Zhao Y-Q, Chi C-F, Wang B (2023) Angiotensin-I-Converting enzyme (ACE)-Inhibitory peptides from the collagens of Monkfish (Lophius litulon) swim bladders: isolation, characterization, Molecular Docking analysis and activity evaluation. Mar Drugs 21(10):516. https://doi.org/10.3390/md21100516
Article CAS PubMed PubMed Central Google Scholar
Idowu AT, Benjakul S (2019) Bitterness of fish protein hydrolysate and its debittering prospects. J Food Biochem 43(9). https://doi.org/10.1111/jfbc.12978
Idowu AT, Benjakul S, Sinthusamran S, Sookchoo P, Kishimura H (2019) Protein hydrolysate from salmon frames: production, characteristics and antioxidative activity. J Food Biochem 43(2):e12734. https://doi.org/10.1111/jfbc.12734
Comments (0)