Alexander JM, Guan J, Li B, Maliskova L, Song M, Shen Y, Huang B, Lomvardas S, Weiner OD (2019) Live-cell imaging reveals enhancer-dependent Sox2 transcription in the absence of enhancer proximity. Elife 8:e41769. https://doi.org/10.7554/eLife.41769
Article PubMed PubMed Central Google Scholar
Alitalo K, Schwab M, Lin CC, Varmus HE, Bishop JM (1983) Homogeneously staining chromosomal regions contain amplified copies of an abundantly expressed cellular oncogene (c-MYC) in malignant neuroendocrine cells from a human colon carcinoma. Proc Natl Acad Sci U S A 80:1707–1711. https://doi.org/10.1073/pnas.80.6.1707
Article CAS PubMed PubMed Central Google Scholar
Alt FW, Kellems RE, Bertino JR, Schimke RT (1978) Selective multiplication of dihydrofolate reductase genes in methotrexate-resistant variants of cultured murine cells. J Biol Chem 253:1357–1370
Article CAS PubMed Google Scholar
Balaban-Malenbaum G, Gilbert F (1980) The proposed origin of double minutes from homogeneously staining region (HSR)-marker chromosomes in human neuroblastoma hybrid cell lines. Cancer Genet Cytogenet 2:339–348
Barker PE, Drwinga HL, Hittelman WN, Maddox AM (1980) Double minutes replicate once during S phase of the cell cycle. Exp Cell Res 130:353–360. https://doi.org/10.1016/0014-4827(80)90012-9
Article CAS PubMed Google Scholar
Basenko EY, Cesare AJ, Iyer S, Griffith JD, McEachern MJ (2010) Telomeric circles are abundant in the stn1-M1 mutant that maintains its telomeres through recombination. Nucleic Acids Res 38:182–189. https://doi.org/10.1093/nar/gkp814
Article CAS PubMed Google Scholar
Benner SE, Wahl GM, Von Hoff DD (1991) Double minute chromosomes and homogeneously staining regions in tumors taken directly from patients versus in human tumor cell lines. Anticancer Drugs 2:11–25. https://doi.org/10.1097/00001813-199102000-00002
Article CAS PubMed Google Scholar
Bickmore WA (2013) The spatial organization of the human genome. Annu Rev Genomics Hum Genet 14:67–84. https://doi.org/10.1146/annurev-genom-091212-153515
Article CAS PubMed Google Scholar
Biedler JL, Spengler BA (1976) A novel chromosome abnormality in human neuroblastoma and antifolate-resistant Chinese hamster cell lives in culture. J Natl Cancer Inst 57:683–695
Article CAS PubMed Google Scholar
Bigner SH, Wong AJ, Mark J, Muhlbaier LH, Kinzler KW, VogelsteinB BDD (1987) Relationship between gene amplification and chromosomal deviations in malignant human gliomas. Cancer Genet Cytogenet 29:165–170. https://doi.org/10.1016/0165-4608(87)90045-8
Article CAS PubMed Google Scholar
Canute GW, Longo SL, Longo JA, Shetler MM, Coyle TE, Winfield JA, HahnPJ, (1998) The hydroxyurea-induced loss of double-minute chromosomes containing amplified epidermal growth factor receptor genes reduces the tumorigenicity and growth of human glioblastoma multiforme. Neurosurgery 42:609–616. https://doi.org/10.1097/00006123-199803000-00031
Article CAS PubMed Google Scholar
Carroll SM, DeRose ML, Gaudray P, Moore CM, Needham-Vandevanter DR, Von Hoff DD, Wahl GM (1988) Double minute chromosomes can be produced from precursors derived from a chromosomal deletion. Mol Cell Biol 8:1525–1533
CAS PubMed PubMed Central Google Scholar
Chamorro González R, Conrad T, Stöber MC et al.(2023) Parallel sequencing of extrachromosomal circular DNAs and transcriptomes in single cancer cells. Nat Genet 55:880–890. https://doi.org/10.1038/s41588-023-01386-y
Article CAS PubMed PubMed Central Google Scholar
Clow PA, Du M, Jillette N, Taghbalout A, Zhu JJ, Cheng AW (2022) CRISPR-mediated multiplexed live cell imaging of nonrepetitive genomic loci with one guide RNA per locus. Nat Commun 13:1871. https://doi.org/10.1038/s41467-022-29343-z
Article CAS PubMed PubMed Central Google Scholar
Coquelle A, Rozier L, Dutrillaux B, Debatisse M (2002) Induction of multiple double-strand breaks within an hsr by meganucleaseI-SceI expression or fragile site activation leads to formation of double minutes and other chromosomal rearrangements. Oncogene 21:7671–7679. https://doi.org/10.1038/sj.onc.1205880
Article CAS PubMed Google Scholar
Cowell JK, Rupniak HT (1983) Chromosome analysis of human neuroblastoma cell line TR14 showing double minutes and an aberration involving chromosome 1. Cancer Genet Cytogenet 9:273–280. https://doi.org/10.1016/0165-4608(83)90011-0
Article CAS PubMed Google Scholar
Cox D, Yuncken C, Spriggs AI (1965) Minute chromatin bodies in malignant tumours of childhood. Lancet 1:55–58
Article CAS PubMed Google Scholar
deCarvalho AC, Kim H, Poisson LM et al.(2018) Discordant inheritance of chromosomal and extrachromosomal DNA elements contributes to dynamic disease evolution in glioblastoma. Nat Genet 50:708–717. https://doi.org/10.1038/s41588-018-0105-0
Article CAS PubMed PubMed Central Google Scholar
Deshpande V, Luebeck J, Nguyen N-PD, Bakhtiari M, Turner KM, Schwab R, Carter H, Mischel PS, Bafna V (2019) Exploring the landscape of focal amplifications in cancer using AmpliconArchitect. Nat Commun 10:392. https://doi.org/10.1038/s41467-018-08200-y
Article CAS PubMed PubMed Central Google Scholar
Eckhardt SG, Dai A, Davidson KK, Forseth BJ, Wahl GM, von Hoff DD (1994) Induction of differentiation in HL60 cells by the reduction of extrachromosomally amplified c-MYC. Proc Natl Acad Sci U S A 91:6674–6678. https://doi.org/10.1073/pnas.91.14.6674
Article CAS PubMed PubMed Central Google Scholar
Fan Y, Mao R, Lv H et al.(2011) Frequency of double minute chromosomes and combined cytogenetic abnormalities and their characteristics. J Appl Genet 52:53–59. https://doi.org/10.1007/s13353-010-0007-z
Germier T, Audibert S, Kocanova S, Lane D, Bystricky K (2018) Real-time imaging of specific genomic loci in eukaryotic cells using the ANCHOR DNA labelling system. Methods 142:16–23. https://doi.org/10.1016/j.ymeth.2018.04.008
Article CAS PubMed Google Scholar
Hamkalo BA, Farnham PJ, Johnston R, Schimke RT (1985) Ultrastructural features of minute chromosomes in a methotrexate-resistant mouse 3T3 cell line. Proc Natl Acad Sci U S A 82:1126–1130
Article CAS PubMed PubMed Central Google Scholar
Helmsauer K, Valieva ME, Ali S et al.(2020) Enhancer hijacking determines extrachromosomal circular MYCN amplicon architecture in neuroblastoma. Nat Commun 11:5823. https://doi.org/10.1038/s41467-020-19452-y
Article CAS PubMed PubMed Central Google Scholar
Henson JD, Cao Y, Huschtscha LI, Chang AC, Au AYM, Pickett HA, Reddel RR (2009) DNA C-circles are specific and quantifiable markers of alternative-lengthening-of-telomeres activity. Nat Biotechnol 27:1181–1185. https://doi.org/10.1038/nbt.1587
Article CAS PubMed Google Scholar
Hung KL, Yost KE, Xie L et al.(2021) ecDNA hubs drive cooperative intermolecular oncogene expression. Nature 600:731–736. https://doi.org/10.1038/s41586-021-04116-8
Article CAS PubMed PubMed Central Google Scholar
Hung KL, Luebeck J, Dehkordi SR et al.(2022) Targeted profiling of human extrachromosomal DNA by CRISPR-CATCH. Nat Genet 54:1746–1754. https://doi.org/10.1038/s41588-022-01190-0
Comments (0)