Chiang, J. Y. Regulation of bile acid synthesis. Front. Biosci. 3, d176–d193 (1998).
Article CAS PubMed Google Scholar
Vlahcevic, Z. R., Pandak, W. M. & Stravitz, R. T. Regulation of bile acid biosynthesis. Gastroenterol. Clin. North. Am. 28, 1–25 (1999).
Article CAS PubMed Google Scholar
Jia, W., Xie, G. & Jia, W. Bile acid–microbiota crosstalk in gastrointestinal inflammation and carcinogenesis. Nat. Rev. Gastroenterol. Hepatol. 15, 111–128 (2018).
Article CAS PubMed Google Scholar
Wu, L. et al. The gut microbiome–bile acid axis in hepatocarcinogenesis. Biomed. Pharmacother. 133, 111036 (2021).
Article CAS PubMed Google Scholar
Lefebvre, P., Cariou, B., Lien, F., Kuipers, F. & Staels, B. Role of bile acids and bile acid receptors in metabolic regulation. Physiol. Rev. 89, 147–191 (2009).
Article CAS PubMed Google Scholar
Ridlon, J. M., Kang, D.-J. & Hylemon, P. B. Bile salt biotransformations by human intestinal bacteria. J. Lipid Res. 47, 241–259 (2006).
Article CAS PubMed Google Scholar
Huijghebaert, S. M. & Hofmann, A. F. Influence of the amino acid moiety on deconjugation of bile acid amidates by cholylglycine hydrolase or human fecal cultures. J. Lipid Res. 27, 742–752 (1986).
Article CAS PubMed Google Scholar
Dawson, P. A. & Karpen, S. J. Intestinal transport and metabolism of bile acids. J. Lipid Res. 56, 1085–1099 (2015).
Article CAS PubMed PubMed Central Google Scholar
Hofmann, A. F. & Hagey, L. R. Key discoveries in bile acid chemistry and biology and their clinical applications: history of the last eight decades. J. Lipid Res. 55, 1553–1595 (2014).
Article CAS PubMed PubMed Central Google Scholar
Urdaneta, V. & Casadesús, J. Interactions between bacteria and bile salts in the gastrointestinal and hepatobiliary tracts. Front. Med. 4, 163 (2017).
Keane, R. M., Gadacz, T. R., Munster, A. M., Birmingham, W. & Winchurch, R. A. Impairment of human lymphocyte function by bile salts. Surgery 95, 439–443 (1984).
Drivas, G., James, O. & Wardle, N. Study of reticuloendothelial phagocytic capacity in patients with cholestasis. Br. Med. J. 1, 1568–1569 (1976).
Article CAS PubMed PubMed Central Google Scholar
Podevin, P. et al. Effect of cholestasis and bile acids on interferon-induced 2′,5′-adenylate synthetase and NK cell activities. Gastroenterology 108, 1192–1198 (1995).
Article CAS PubMed Google Scholar
Quinn, R. A. et al. Global chemical effects of the microbiome include new bile-acid conjugations. Nature 579, 123–129 (2020). The identification of a new class of bile acid modifications: microbially conjugated bile acids, produced by the microbiota.
Article CAS PubMed PubMed Central Google Scholar
Shalon, D. et al. Profiling the human intestinal environment under physiological conditions. Nature 617, 581–591 (2023).
Article CAS PubMed PubMed Central Google Scholar
Zhu, Q.-F. et al. Alternating dual-collision energy scanning mass spectrometry approach: discovery of novel microbial bile-acid conjugates. Anal. Chem. 94, 2655–2664 (2022).
Article CAS PubMed Google Scholar
Wang, Y.-Z. et al. A strategy for screening and identification of new amino acid-conjugated bile acids with high coverage by liquid chromatography-mass spectrometry. Anal. Chim. Acta 1239, 340691 (2023).
Article CAS PubMed Google Scholar
Pristner, M. et al. Neuroactive metabolites and bile acids are altered in extremely premature infants with brain injury. Cell Rep. Med. 5, 101480 (2024).
Article CAS PubMed PubMed Central Google Scholar
Gentry, E. C. et al. Reverse metabolomics for the discovery of chemical structures from humans. Nature 626, 419–426 (2024). Synthesis-based reverse metabolomics led to the identification of new microbial modifications of bile acids.
Article CAS PubMed Google Scholar
Wang, H., Chen, J., Hollister, K., Sowers, L. C. & Forman, B. M. Endogenous bile acids are ligands for the nuclear receptor FXR/BAR. Mol. Cell 3, 543–553 (1999).
Article CAS PubMed Google Scholar
Maruyama, T. et al. Identification of membrane-type receptor for bile acids (M-BAR). Biochem. Biophys. Res. Commun. 298, 714–719 (2002).
Article CAS PubMed Google Scholar
Kawamata, Y. et al. A G protein-coupled receptor responsive to bile acids. J. Biol. Chem. 278, 9435–9440 (2003).
Article CAS PubMed Google Scholar
Fiorucci, S., Rizzo, G., Donini, A., Distrutti, E. & Santucci, L. Targeting farnesoid X receptor for liver and metabolic disorders. Trends Mol. Med. 13, 298–309 (2007).
Article CAS PubMed Google Scholar
Sun, L., Cai, J. & Gonzalez, F. J. The role of farnesoid X receptor in metabolic diseases, and gastrointestinal and liver cancer. Nat. Rev. Gastroenterol. Hepatol. 18, 335–347 (2021).
Article CAS PubMed Google Scholar
Sinal, C. J. et al. Targeted disruption of the nuclear receptor FXR/BAR impairs bile acid and lipid homeostasis. Cell 102, 731–744 (2000).
Article CAS PubMed Google Scholar
Vassileva, G. et al. Targeted deletion of Gpbar1 protects mice from cholesterol gallstone formation. Biochem. J. 398, 423–430 (2006).
Article CAS PubMed PubMed Central Google Scholar
Roberts, L. R. et al. Cathepsin B contributes to bile salt-induced apoptosis of rat hepatocytes. Gastroenterology 113, 1714–1726 (1997).
Article CAS PubMed Google Scholar
Rodrigues, C. M., Fan, G., Ma, X., Kren, B. T. & Steer, C. J. A novel role for ursodeoxycholic acid in inhibiting apoptosis by modulating mitochondrial membrane perturbation. J. Clin. Invest. 101, 2790–2799 (1998).
Article CAS PubMed PubMed Central Google Scholar
Inagaki, T. et al. Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor. Proc. Natl Acad. Sci. USA 103, 3920–3925 (2006).
Article CAS PubMed PubMed Central Google Scholar
Cipriani, S. et al. The bile acid receptor GPBAR-1 (TGR5) modulates integrity of intestinal barrier and immune response to experimental colitis. PLoS ONE 6, e25637 (2011).
Article CAS PubMed PubMed Central Google Scholar
Camilleri, M. Leaky gut: mechanisms, measurement and clinical implications in humans. Gut 68, 1516–1526 (2019).
Comments (0)