How bile acids and the microbiota interact to shape host immunity

Chiang, J. Y. Regulation of bile acid synthesis. Front. Biosci. 3, d176–d193 (1998).

Article  CAS  PubMed  Google Scholar 

Vlahcevic, Z. R., Pandak, W. M. & Stravitz, R. T. Regulation of bile acid biosynthesis. Gastroenterol. Clin. North. Am. 28, 1–25 (1999).

Article  CAS  PubMed  Google Scholar 

Jia, W., Xie, G. & Jia, W. Bile acid–microbiota crosstalk in gastrointestinal inflammation and carcinogenesis. Nat. Rev. Gastroenterol. Hepatol. 15, 111–128 (2018).

Article  CAS  PubMed  Google Scholar 

Wu, L. et al. The gut microbiome–bile acid axis in hepatocarcinogenesis. Biomed. Pharmacother. 133, 111036 (2021).

Article  CAS  PubMed  Google Scholar 

Lefebvre, P., Cariou, B., Lien, F., Kuipers, F. & Staels, B. Role of bile acids and bile acid receptors in metabolic regulation. Physiol. Rev. 89, 147–191 (2009).

Article  CAS  PubMed  Google Scholar 

Ridlon, J. M., Kang, D.-J. & Hylemon, P. B. Bile salt biotransformations by human intestinal bacteria. J. Lipid Res. 47, 241–259 (2006).

Article  CAS  PubMed  Google Scholar 

Huijghebaert, S. M. & Hofmann, A. F. Influence of the amino acid moiety on deconjugation of bile acid amidates by cholylglycine hydrolase or human fecal cultures. J. Lipid Res. 27, 742–752 (1986).

Article  CAS  PubMed  Google Scholar 

Dawson, P. A. & Karpen, S. J. Intestinal transport and metabolism of bile acids. J. Lipid Res. 56, 1085–1099 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hofmann, A. F. & Hagey, L. R. Key discoveries in bile acid chemistry and biology and their clinical applications: history of the last eight decades. J. Lipid Res. 55, 1553–1595 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Urdaneta, V. & Casadesús, J. Interactions between bacteria and bile salts in the gastrointestinal and hepatobiliary tracts. Front. Med. 4, 163 (2017).

Article  Google Scholar 

Keane, R. M., Gadacz, T. R., Munster, A. M., Birmingham, W. & Winchurch, R. A. Impairment of human lymphocyte function by bile salts. Surgery 95, 439–443 (1984).

CAS  PubMed  Google Scholar 

Drivas, G., James, O. & Wardle, N. Study of reticuloendothelial phagocytic capacity in patients with cholestasis. Br. Med. J. 1, 1568–1569 (1976).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Podevin, P. et al. Effect of cholestasis and bile acids on interferon-induced 2′,5′-adenylate synthetase and NK cell activities. Gastroenterology 108, 1192–1198 (1995).

Article  CAS  PubMed  Google Scholar 

Quinn, R. A. et al. Global chemical effects of the microbiome include new bile-acid conjugations. Nature 579, 123–129 (2020). The identification of a new class of bile acid modifications: microbially conjugated bile acids, produced by the microbiota.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shalon, D. et al. Profiling the human intestinal environment under physiological conditions. Nature 617, 581–591 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhu, Q.-F. et al. Alternating dual-collision energy scanning mass spectrometry approach: discovery of novel microbial bile-acid conjugates. Anal. Chem. 94, 2655–2664 (2022).

Article  CAS  PubMed  Google Scholar 

Wang, Y.-Z. et al. A strategy for screening and identification of new amino acid-conjugated bile acids with high coverage by liquid chromatography-mass spectrometry. Anal. Chim. Acta 1239, 340691 (2023).

Article  CAS  PubMed  Google Scholar 

Pristner, M. et al. Neuroactive metabolites and bile acids are altered in extremely premature infants with brain injury. Cell Rep. Med. 5, 101480 (2024).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gentry, E. C. et al. Reverse metabolomics for the discovery of chemical structures from humans. Nature 626, 419–426 (2024). Synthesis-based reverse metabolomics led to the identification of new microbial modifications of bile acids.

Article  CAS  PubMed  Google Scholar 

Wang, H., Chen, J., Hollister, K., Sowers, L. C. & Forman, B. M. Endogenous bile acids are ligands for the nuclear receptor FXR/BAR. Mol. Cell 3, 543–553 (1999).

Article  CAS  PubMed  Google Scholar 

Maruyama, T. et al. Identification of membrane-type receptor for bile acids (M-BAR). Biochem. Biophys. Res. Commun. 298, 714–719 (2002).

Article  CAS  PubMed  Google Scholar 

Kawamata, Y. et al. A G protein-coupled receptor responsive to bile acids. J. Biol. Chem. 278, 9435–9440 (2003).

Article  CAS  PubMed  Google Scholar 

Fiorucci, S., Rizzo, G., Donini, A., Distrutti, E. & Santucci, L. Targeting farnesoid X receptor for liver and metabolic disorders. Trends Mol. Med. 13, 298–309 (2007).

Article  CAS  PubMed  Google Scholar 

Sun, L., Cai, J. & Gonzalez, F. J. The role of farnesoid X receptor in metabolic diseases, and gastrointestinal and liver cancer. Nat. Rev. Gastroenterol. Hepatol. 18, 335–347 (2021).

Article  CAS  PubMed  Google Scholar 

Sinal, C. J. et al. Targeted disruption of the nuclear receptor FXR/BAR impairs bile acid and lipid homeostasis. Cell 102, 731–744 (2000).

Article  CAS  PubMed  Google Scholar 

Vassileva, G. et al. Targeted deletion of Gpbar1 protects mice from cholesterol gallstone formation. Biochem. J. 398, 423–430 (2006).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Roberts, L. R. et al. Cathepsin B contributes to bile salt-induced apoptosis of rat hepatocytes. Gastroenterology 113, 1714–1726 (1997).

Article  CAS  PubMed  Google Scholar 

Rodrigues, C. M., Fan, G., Ma, X., Kren, B. T. & Steer, C. J. A novel role for ursodeoxycholic acid in inhibiting apoptosis by modulating mitochondrial membrane perturbation. J. Clin. Invest. 101, 2790–2799 (1998).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Inagaki, T. et al. Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor. Proc. Natl Acad. Sci. USA 103, 3920–3925 (2006).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cipriani, S. et al. The bile acid receptor GPBAR-1 (TGR5) modulates integrity of intestinal barrier and immune response to experimental colitis. PLoS ONE 6, e25637 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Camilleri, M. Leaky gut: mechanisms, measurement and clinical implications in humans. Gut 68, 1516–1526 (2019).

Comments (0)

No login
gif