Cihan Y. The role and importance of SBRT in prostate cancer. Int Braz J Urol. 2018 Nov-Dec;44(6):1272–4. https://doi.org/10.1590/S1677-5538.IBJU.2018.0484. PMID: 30325604; PMCID: PMC6442169.
Aghdam N, Pepin A, Buchberger D, Hirshberg J, Lei S, Ayoob M, Danner M, Yung T, Kumar D, Collins BT, Lynch J, Kataria S, Suy S, Collins SP. Stereotactic body Radiation Therapy (SBRT) for prostate Cancer in men with a high baseline international prostate symptom score (IPSS ≥ 15). Front Oncol. 2020;10:1060. https://doi.org/10.3389/fonc.2020.01060. PMID: 32719744; PMCID: PMC7350884.
Article PubMed PubMed Central Google Scholar
Maradit Kremers H, Larson DR, Crowson CS, Kremers WK, Washington RE, Steiner CA, Jiranek WA, Berry DJ. Prevalence of total hip and knee replacement in the United States. J Bone Joint Surg Am. 2015;97(17):1386–97. https://doi.org/10.2106/JBJS.N.01141. PMID: 26333733; PMCID: PMC4551172.
Population Health Division. The Health of the people of New South Wales – Report of the Chief Health Officer, Data Book – Burden of Disease. Sydney: NSW Department of Health; 2008.
Banaee N, Barough MS, Asgari S, Hosseinzadeh E, Salimi E. Evaluating the effects of metal artifacts on dose distribution of the pelvic region. J Cancer Res Ther 2021 Apr-Jun;17(2):450–4. https://doi.org/10.4103/jcrt.JCRT_786_19.
Reft C, Alecu R, Das IJ, Gerbi BJ, Keall P, Lief E, Mijnheer BJ, Papanikolaou N, Sibata C, Van Dyk J, AAPM Radiation Therapy Committee Task Group 63. Dosimetric considerations for patients with HIP prostheses undergoing pelvic irradiation. Report of the AAPM Radiation Therapy Committee Task Group 63. Med Phys. 2003;30(6):1162–82. https://doi.org/10.1118/1.1565113.
Giantsoudi D, De Man B, Verburg J, Trofimov A, Jin Y, Wang G, Gjesteby L, Paganetti H. Metal artifacts in computed tomography for radiation therapy planning: dosimetric effects and impact of metal artifact reduction. Phys Med Biol. 2017;62(8):R49–80. https://doi.org/10.1088/1361-6560/aa5293. Epub 2017 Mar 21.
Attix FH. Introduction to radiological phyfsics and radiation dosimetry. New York: Wiley; 1986.
Das IJ, Kahn FM. Backscatter dose perturbation at high atomic number interfaces in megavoltage photon beams. Med Phys. 1989;16(3):367–75. https://doi.org/10.1118/1.596345.
Article CAS PubMed Google Scholar
Mahase SS, D’Angelo D, Kang J, Hu JC, Barbieri CE, Nagar H. Trends in the use of stereotactic body radiotherapy for treatment of prostate Cancer in the United States. JAMA Netw Open. 2020;3(2):e1920471. https://doi.org/10.1001/jamanetworkopen.2019.20471. Erratum in: JAMA Netw Open. 2020;3(10):e2027727.
Dearnaley D, Syndikus I, Mossop H, Khoo V, Birtle A, Bloomfield D, Graham J, Kirkbride P, Logue J, Malik Z, Money-Kyrle J, O’Sullivan JM, Panades M, Parker C, Patterson H, Scrase C, Staffurth J, Stockdale A, Tremlett J, Bidmead M, Mayles H, Naismith O, South C, Gao A, Cruickshank C, Hassan S, Pugh J, Griffin C, Hall E. CHHiP Investigators. Conventional versus hypofractionated high-dose intensity-modulated radiotherapy for prostate cancer: 5-year outcomes of the randomised, non-inferiority, phase 3 CHHiP trial. Lancet Oncol. 2016;17(8):1047–1060. doi: 10.1016/S1470-2045(16)30102-4. Epub 2016 Jun 20. Erratum in: Lancet Oncol. 2016;17 (8):e321.
Charnley N, Morgan A, Thomas E, Wilson S, Bacon S, Wilson D, Bottomley D. The use of CT-MR image registration to define target volumes in pelvic radiotherapy in the presence of bilateral hip replacements. Br J Radiol. 2005;78(931):634–6. https://doi.org/10.1259/bjr/28412864.
Article CAS PubMed Google Scholar
Rasch C, Barillot I, Remeijer P, Touw A, van Herk M, Lebesque JV. Definition of the prostate in CT and MRI: a multi-observer study. Int J Radiat Oncol Biol Phys. 1999;43(1):57–66. https://doi.org/10.1016/s0360-3016(98)00351-4.
Article CAS PubMed Google Scholar
Sannazzari GL, Ragona R, Ruo Redda MG, Giglioli FR, Isolato G, Guarneri A. CT-MRI image fusion for delineation of volumes in three-dimensional conformal radiation therapy in the treatment of localized prostate cancer. Br J Radiol. 2002;75(895):603–7. https://doi.org/10.1259/bjr.75.895.750603.
Article CAS PubMed Google Scholar
Puvanasunthararajah S, Fontanarosa D, Wille ML, Camps SM. The application of metal artifact reduction methods on computed tomography scans for radiotherapy applications: a literature review. J Appl Clin Med Phys. 2021;22(6):198–223. https://doi.org/10.1002/acm2.13255.
Article PubMed PubMed Central Google Scholar
Nielsen JS, Van Leemput K, Edmund JM. MR-based CT metal artifact reduction for head‐and‐neck photon, electron, and proton radiotherapy. Med Phys. 2019;46:4314–23.
Park PC, Schreibmann E, Roper J, Elder E, Crocker I, Fox T, Zhu XR, Dong L, Dhabaan A. MRI-based computed tomography metal artifact correction method for improving proton range calculation accuracy. Int J Radiat Oncol Biol Phys. 2015;91(4):849 – 56. https://doi.org/10.1016/j.ijrobp.2014.12.027. PMID: 25752400.
Akdeniz Y, Yegingil I, Yegingil Z. Effects of metal implants and a metal artifact reduction tool on calculation accuracy of AAA and Acuros XB algorithms in small fields. Med Phys. 2019;46:5326–35.
Jia Y, Zhao L, Cheng C, Mcdonald M, Das I. SU-E‐T‐450: dose perturbation of spinal metal implants in proton beam therapy. Med Phys. 2013;40:309.
Righetto R, Clemens LP, Lorentini S, Fracchiolla F, Algranati C, Tommasino F, Dionisi F, Cianchetti M, Schwarz M, Farace P. Accurate proton treatment planning for pencil beam crossing titanium fixation implants. Phys Med. 2020;70:28–38. Epub 2020 Jan 15. PMID: 31954210.
Acquah GF, Kyeremeh PO, Hasford F, Boadu M, Sosu EK, Inkoom S. Evaluation of metallic implant artifact on photon beam calculation algorithms using a CIRS thorax phantom. J Radiat Res Appl Sci. 2018;11:347–9.
Parenica HM, Mavroidis P, Jones W, Swanson G, Papanikolaou N, Stathakis S. VMAT optimization and dose calculation in the presence of metallic hip prostheses. Technol Cancer Res Treat. 2019;18:1–10.
Huang X, Wang J, Tang F, Zhong T, Zhang Y. Metal artifact reduction on cervical CT images by deep residual learning 08 information and Computing sciences 0801 Artificial Intelligence and Image Processing. Biomed Eng Online. 2018;17:1–15.
Gjesteby L, Shan H, Yang Q, Xi Y, Jin Y, Giantsoudi D, Paganetti H, De Man B, Wang G. A dual-stream deep convolutional network for reducing metal streak artifacts in CT images. Phys Med Biol. 2019;64(23):235003. https://doi.org/10.1088/1361-6560/ab4e3e. PMID: 31618724.
Koike Y, Anetai Y, Takegawa H, Ohira S, Nakamura S, Tanigawa N. Deep learning-based metal artifact reduction using cycle‐consistent adversarial network for intensity‐modulated head and neck radiation therapy treatment planning. Phys Med. 2020;78:8–14.
Filograna L, Magarelli N, Leone A, Guggenberger R, Winklhofer S, Thali MJ, Bonomo L. Value of monoenergetic dual-energy CT (DECT) for artefact reduction from metallic orthopedic implants in post-mortem studies. Skeletal Radiol. 2015;44(9):1287–94. https://doi.org/10.1007/s00256-015-2155-z. Epub 2015 May 12. PMID: 25962510.
Guggenberger R, Winklhofer S, Osterhoff G, Wanner GA, Fortunati M, Andreisek G, Alkadhi H, Stolzmann P. Metallic artefact reduction with monoenergetic dual-energy CT: systematic ex vivo evaluation of posterior spinal fusion implants from various vendors and different spine levels. Eur Radiol. 2012;22(11):2357–64. https://doi.org/10.1007/s00330-012-2501-7. Epub 2012 May 30. PMID: 22645043.
Article CAS PubMed Google Scholar
Yue D, Fan Rong C, Ning C, Liang H, Ai Lian L, Ru Xin W, Ya Hong L. Reduction of metal artifacts from unilateral hip arthroplasty on dual-energy CT with metal artifact reduction software. Acta Radiol. 2018;59(7):853–60. Epub 2017 Sep 12. PMID: 28899125.
Aubin M, Morin O, Chen J, Gillis A, Pickett B, Aubry JF, Akazawa C, Speight J, Roach M 3rd, Pouliot J. The use of megavoltage cone-beam CT to complement CT for target definition in pelvic radiotherapy in the presence of hip replacement. Br J Radiol. 2006;79(947):918–21. https://doi.org/10.1259/bjr/19559792. Epub 2006 Aug 17.
Article CAS PubMed Google Scholar
McCollough CH, Boedeker K, Cody D, Duan X, Flohr T, Halliburton SS, Hsieh J, Layman RR, Pelc NJ. Principles and applications of multienergy CT: Report of AAPM Task Group 291. Med Phys. 2020;47(7):e881-e912. doi: 10.1002/mp.14157. Epub 2020 May 28. Erratum in: Med Phys. 2021;48(5):2694. PMID: 32215937.
Rodriguez-Granillo GA, Carrascosa P, Cipriano S, De Zan M, Deviggiano A, Capunay C, Cury RC. Beam hardening artifact reduction using dual energy computed tomography: implications for myocardial perfusion studies. Cardiovasc Diagn Ther. 2015;5(1):79–85. https://doi.org/10.3978/j.issn.2223-3652.2015.01.13.
Article PubMed PubMed Central Google Scholar
Stolzmann P, Winklhofer S, Schwendener N, Alkadhi H, Thali MJ, Ruder TD. Monoenergetic computed tomography reconstructions reduce beam hardening artifacts from dental restorations. Forensic Sci Med Pathol. 2013;9(3):327–32. https://doi.org/10.1007/s12024-013-9420-z. Epub 2013 Mar 20.
Albrecht MH, Vogl TJ, Martin SS, Nance JW, Duguay TM, Wichmann JL, De Cecco CN, Varga-Szemes A, van Assen M, Tesche C, Schoepf UJ. Review of clinical applications for virtual Monoenergetic Dual-Energy CT. Radiology. 2019;293(2):260–71. https://doi.org/10.1148/radiol.2019182297. Epub 2019 Sep 10.
Bamberg F, Dierks A, Nikolaou K, Reiser MF, Becker CR, Johnson TR. Metal artifact reduction by dual energy computed tomography using monoenergetic extrapolation. Eur Radiol. 2011;21:1424–9.
Cha J, Kim HJ, Kim ST, Kim YK, Kim HY, Park GM. Dual-energy CT with virtual monochromatic images and metal artifact reduction software for reducing metallic dental artifacts. Acta Radiol. 2017;58:1312–9.
Dunet V, Bernasconi M, Hajdu SD, Meuli RA, Daniel RT, Zerlauth JB. Impact of metal artifact reduction software on image quality of gemstone spectral imaging dual-energy cerebral CT ang
Comments (0)