Fearon, E. R. & Vogelstein, B. A genetic model for colorectal tumorigenesis. Cell 61, 759–767 (1990).
Article CAS PubMed Google Scholar
Bos, J. L. et al. Prevalence of ras gene mutations in human colorectal cancers. Nature 327, 293–297 (1987).
Article CAS PubMed Google Scholar
Karapetis, C. S. et al. K-ras mutations and benefit from cetuximab in advanced colorectal cancer. N. Engl. J. Med. 359, 1757–1765 (2008).
Article CAS PubMed Google Scholar
Zhang, Y. et al. A Pan-Cancer Proteogenomic Atlas of PI3K/AKT/mTOR pathway alterations. Cancer Cell 31, 820–832.e823 (2017).
Article CAS PubMed PubMed Central Google Scholar
Moore, A. R., Rosenberg, S. C., McCormick, F. & Malek, S. RAS-targeted therapies: is the undruggable drugged? Nat. Rev. Drug Discov. 19, 533–552 (2020).
Article CAS PubMed PubMed Central Google Scholar
Fruman, D. A. et al. The PI3K pathway in human disease. Cell 170, 605–635 (2017).
Article CAS PubMed PubMed Central Google Scholar
Voutsadakis, I. A. KRAS mutated colorectal cancers with or without PIK3CA mutations: clinical and molecular profiles inform current and future therapeutics. Crit. Rev. Oncol. Hematol. 186, 103987 (2023).
Glaviano, A. et al. PI3K/AKT/mTOR signaling transduction pathway and targeted therapies in cancer. Mol. Cancer 22, 138 (2023).
Article CAS PubMed PubMed Central Google Scholar
Vasan, N. & Cantley, L. C. At a crossroads: how to translate the roles of PI3K in oncogenic and metabolic signalling into improvements in cancer therapy. Nat. Rev. Clin. Oncol. 19, 471–485 (2022).
Article CAS PubMed PubMed Central Google Scholar
Tolaney, S. M. et al. Phase Ib study of ribociclib plus fulvestrant and ribociclib plus fulvestrant plus PI3K inhibitor (alpelisib or buparlisib) for HR+ advanced breast cancer. Clin. Cancer Res. 27, 418–428 (2021).
Article CAS PubMed Google Scholar
Banerji, U. et al. A phase I open-label study to identify a dosing regimen of the pan-AKT inhibitor AZD5363 for evaluation in solid tumors and in PIK3CA-mutated breast and gynecologic cancers. Clin. Cancer Res. 24, 2050–2059 (2018).
Article CAS PubMed Google Scholar
Lee, B. J. et al. Selective inhibitors of mTORC1 activate 4EBP1 and suppress tumor growth. Nat. Chem. Biol. 17, 1065–1074 (2021).
Article CAS PubMed PubMed Central Google Scholar
Vanhaesebroeck, B., Perry, M. W. D., Brown, J. R., André, F. & Okkenhaug, K. PI3K inhibitors are finally coming of age. Nat. Rev. Drug Discov. 20, 741–769 (2021).
Article CAS PubMed PubMed Central Google Scholar
Mora, A., Komander, D., van Aalten, D. M. & Alessi, D. R. PDK1, the master regulator of AGC kinase signal transduction. Semin. Cell. Dev. Biol. 15, 161–170 (2004).
Article CAS PubMed Google Scholar
Manning, B. D. & Cantley, L. C. AKT/PKB signaling: navigating downstream. Cell 129, 1261–1274 (2007).
Article CAS PubMed PubMed Central Google Scholar
Eser, S. et al. Selective requirement of PI3K/PDK1 signaling for Kras oncogene-driven pancreatic cell plasticity and cancer. Cancer Cell 23, 406–420 (2013).
Article CAS PubMed Google Scholar
Cai, W. et al. A genome-wide screen identifies PDPK1 as a target to enhance the efficacy of MEK1/2 inhibitors in NRAS mutant melanoma. Cancer Res. 82, 2625–2639 (2022).
Article PubMed PubMed Central Google Scholar
Coppé, J. P. et al. Mapping phospho-catalytic dependencies of therapy-resistant tumors reveals actionable vulnerabilities. Nat. Cell. Biol. 21, 778–790 (2019).
Article PubMed PubMed Central Google Scholar
Peifer, C. & Alessi, D. R. Small-molecule inhibitors of PDK1. ChemMedChem 3, 1810–1838 (2008).
Article CAS PubMed Google Scholar
Zhu, H., Kavsak, P., Abdollah, S., Wrana, J. L. & Thomsen, G. H. A SMAD ubiquitin ligase targets the BMP pathway and affects embryonic pattern formation. Nature 400, 687–693 (1999).
Article CAS PubMed Google Scholar
Yamashita, M. et al. Ubiquitin ligase Smurf1 controls osteoblast activity and bone homeostasis by targeting MEKK2 for degradation. Cell 121, 101–113 (2005).
Article CAS PubMed PubMed Central Google Scholar
Xia, Q., Li, Y., Han, D. & Dong, L. SMURF1, a promoter of tumor cell progression? Cancer Gene Ther. 28, 551–565 (2021).
Article CAS PubMed Google Scholar
Barlaam, B. et al. Discovery of (R)-8-(1-(3,5-difluorophenylamino)ethyl)-N,N-dimethyl-2-morpholino-4-oxo-4H-chromene-6-carboxamide (AZD8186): a potent and selective inhibitor of PI3Kβ and PI3Kδ for the treatment of PTEN-deficient cancers. J. Med. Chem. 58, 943–962 (2015).
Article CAS PubMed Google Scholar
Jo, H. et al. Small molecule-induced cytosolic activation of protein kinase Akt rescues ischemia-elicited neuronal death. Proc. Natl Acad. Sci. USA 109, 10581–10586 (2012).
Article CAS PubMed PubMed Central Google Scholar
Xie, P. et al. The covalent modifier Nedd8 is critical for the activation of Smurf1 ubiquitin ligase in tumorigenesis. Nat. Commun. 5, 3733 (2014).
Article CAS PubMed Google Scholar
Xie, P. et al. Neddylation of PTEN regulates its nuclear import and promotes tumor development. Cell. Res. 31, 291–311 (2021).
Article CAS PubMed Google Scholar
Lobato-Gil, S. et al. Proteome-wide identification of NEDD8 modification sites reveals distinct proteomes for canonical and atypical NEDDylation. Cell Rep. 34, 108635 (2021).
Article CAS PubMed Google Scholar
Oliveira, C. A. B., Isaakova, E., Beli, P. & Xirodimas, D. P. A mass spectrometry-based strategy for mapping modification sites for the ubiquitin-like modifier NEDD8. Methods Mol. Biol. 2602, 137–149 (2023).
Article CAS PubMed Google Scholar
Schulze, J. O. et al. Bidirectional allosteric communication between the ATP-binding site and the regulatory PIF pocket in PDK1 protein kinase. Cell Chem. Biol. 23, 1193–1205 (2016).
Article CAS PubMed Google Scholar
Yang, W. L. et al. The E3 ligase TRAF6 regulates Akt ubiquitination and activation. Science 325, 1134–1138 (2009).
Comments (0)