Parsons, J. B. & Rock, C. O. Bacterial lipids: metabolism and membrane homeostasis. Prog. Lipid Res. 52, 249–276 (2013).
Article CAS PubMed PubMed Central Google Scholar
Van Meer, G., Voelker, D. R. & Feigenson, G. W. Membrane lipids: where they are and how they behave. Nat. Rev. Mol. Cell Biol. 9, 112–124 (2008).
Article PubMed PubMed Central Google Scholar
Harayama, T. & Riezman, H. Understanding the diversity of membrane lipid composition. Nat. Rev. Mol. Cell Biol. 19, 281–296 (2018).
Article CAS PubMed Google Scholar
Vance, J. E. Phospholipid synthesis and transport in mammalian cells. Traffic 16, 1–18 (2014).
Carman, G. M. & Henry, S. A. Phospholipid biosynthesis in the yeast Saccharomyces cerevisiae and interrelationship with other metabolic processes. Prog. Lipid Res. 38, 361–399 (1999).
Article CAS PubMed Google Scholar
Vance, J. E. & Vance, D. E. Phospholipid biosynthesis in mammalian cells. Biochem. Cell Biol. 82, 113–128 (2004).
Article CAS PubMed Google Scholar
Henry, S. A., Kohlwein, S. D. & Carman, G. M. Metabolism and regulation of glycerolipids in the yeast Saccharomyces cerevisiae. Genetics 190, 317–349 (2012).
Article CAS PubMed PubMed Central Google Scholar
Lykidis, A. Comparative genomics and evolution of eukaryotic phospholipid biosynthesis. Prog. Lipid Res. 46, 171–199 (2007).
Article CAS PubMed Google Scholar
Gibellini, F. & Smith, T. K. The Kennedy pathway—de novo synthesis of phosphatidylethanolamine and phosphatidylcholine. IUBMB Life 62, 414–428 (2010).
Article CAS PubMed Google Scholar
Dowhan, W., Bogdanov, M. & Eugene, P. Kennedy’s legacy: defining bacterial phospholipid pathways and function. Front. Mol. Biosci. 8, 666203 (2021).
Article CAS PubMed PubMed Central Google Scholar
Kennedy, E. P. & Weiss, S. B. The function of cytidine coenzymes in the biosynthesis of phospholipides. J. Biol. Chem. 222, 193–214 (1956).
Article CAS PubMed Google Scholar
Henneberry, A. L., Wistow, G. & McMaster, C. R. Cloning, genomic organization, and characterization of a human cholinephosphotransferase. J. Biol. Chem. 275, 29808–29815 (2000).
Article CAS PubMed Google Scholar
Dowhan, W., Wickner, W. T. & Kennedy, E. P. Purification and properties of phosphatidylserine decarboxylase from Escherichia coli. J. Biol. Chem. 249, 3079–3084 (1974).
Article CAS PubMed Google Scholar
Calzada, E., Onguka, O. & Claypool, S. M. Phosphatidylethanolamine metabolism in health and disease. Int. Rev. Cell Mol. Biol. 321, 29–88 (2016).
Article CAS PubMed Google Scholar
Acoba, M. G., Senoo, N. & Claypool, S. M. Phospholipid ebb and flow makes mitochondria go. J. Cell Biol. 219, e202003131 (2020).
Article CAS PubMed PubMed Central Google Scholar
Vance, D. E. & Ridgway, N. D. The methylation of phosphatidylethanolamine. Prog. Lipid Res. 27, 61–79 (1988).
Article CAS PubMed Google Scholar
Ye, C., Sutter, B. M., Wang, Y., Kuang, Z. & Tu, B. P. A metabolic function for phospholipid and histone methylation. Mol. Cell 66, 180–193 (2017).
Article CAS PubMed PubMed Central Google Scholar
Cornell, R. B. & Ridgway, N. D. CTP:phosphocholine cytidylyltransferase: function, regulation, and structure of an amphitropic enzyme required for membrane biogenesis. Prog. Lipid Res. 59, 147–171 (2015).
Article CAS PubMed Google Scholar
Lane, A. N. & Fan, T. W.-M. Regulation of mammalian nucleotide metabolism and biosynthesis. Nucleic Acids Res. 43, 2466–2485 (2015).
Article CAS PubMed PubMed Central Google Scholar
Vetter, I. R. & Wittinghofer, A. Nucleoside triphosphate-binding proteins: different scaffolds to achieve phosphoryl transfer. Q. Rev. Biophys. 32, 1–56 (1999).
Article CAS PubMed Google Scholar
Santos-Rosa, H., Leung, J., Grimsey, N., Peak-Chew, S. & Siniossoglou, S. The yeast lipin Smp2 couples phospholipid biosynthesis to nuclear membrane growth. EMBO J. 24, 1931–1941 (2005).
Article CAS PubMed PubMed Central Google Scholar
Han, G.-S., Wu, W.-I. & Carman, G. M. The Saccharomyces cerevisiae lipin homolog is a Mg2+-dependent phosphatidate phosphatase enzyme. J. Biol. Chem. 281, 9210–9218 (2006).
Article CAS PubMed Google Scholar
Rashid, T. et al. Lipin1 deficiency causes sarcoplasmic reticulum stress and chaperone-responsive myopathy. EMBO J. 38, e99576 (2019).
Pascual, F., Soto-Cardalda, A. & Carman, G. M. PAH1-encoded phosphatidate phosphatase plays a role in the growth phase- and inositol-mediated regulation of lipid synthesis in Saccharomyces cerevisiae. J. Biol. Chem. 288, 35781–35792 (2013).
Article CAS PubMed PubMed Central Google Scholar
Park, Y., Han, G.-S., Mileykovskaya, E., Garrett, T. A. & Carman, G. M. Altered lipid synthesis by lack of yeast Pah1 phosphatidate phosphatase reduces chronological life span. J. Biol. Chem. 290, 25382–25394 (2015).
Article CAS PubMed PubMed Central Google Scholar
Jamil, H., Utal, A. K. & Vance, D. E. Evidence that cyclic AMP-induced inhibition of phosphatidylcholine biosynthesis is caused by a decrease in cellular diacylglycerol levels in cultured rat hepatocytes. J. Biol. Chem. 267, 1752–1760 (1992).
Article CAS PubMed Google Scholar
Bahmanyar, S. et al. Spatial control of phospholipid flux restricts endoplasmic reticulum sheet formation to allow nuclear envelope breakdown. Genes Dev. 28, 121–126 (2014).
Article CAS PubMed PubMed Central Google Scholar
Fang, W., Zhu, Y., Yang, S., Tong, X. & Ye, C. Reciprocal regulation of phosphatidylcholine synthesis and H3K36 methylation programs metabolic adaptation. Cell Rep. 39, 110672 (2022).
Article CAS PubMed Google Scholar
McMaster, C. R. & Bell, R. M. CDP-ethanolamine:1,2-diacylglycerol ethanolaminephosphotransferase. Biochim. Biophys. Acta 1348, 117–123 (1997).
Article CAS PubMed Google Scholar
Boumann, H. A., de Kruijff, B., Heck, A. J. & de Kroon, A. I. The selective utilization of substrates in vivo by the phosphatidylethanolamine and phosphatidylcholine biosynthetic enzymes Ept1p and Cpt1p in yeast. FEBS Lett. 569, 173–177 (2004).
Comments (0)