Robertson GL. Diabetes insipidus. Endocrinol Metab Clin North Am. 1995;24(3):549–72. (In eng).
Article CAS PubMed Google Scholar
Land H, Schütz G, Schmale H, Richter D. Nucleotide sequence of cloned cDNA encoding bovine arginine vasopressin-neurophysin II precursor. Nature. 1982;295(5847):299–303. https://doi.org/10.1038/295299a0. (In eng).
Article CAS PubMed Google Scholar
Levy B, Chauvet MT, Chauvet J, Acher R. Ontogeny of bovine neurohypophysial hormone precursors. II. Foetal copeptin, the third domain of the vasopressin precursor. Int J Pept Protein Res. 1986;27(3):320–4. (In eng).
Article CAS PubMed Google Scholar
Fenske W, Refardt J, Chifu I, et al. A copeptin-based Approach in the diagnosis of Diabetes insipidus. N Engl J Med. 2018;379(5):428–39.
Article CAS PubMed Google Scholar
Winzeler B, Cesana-Nigro N, Refardt J, et al. Arginine-stimulated copeptin measurements in the differential diagnosis of Diabetes insipidus: a prospective diagnostic study. Lancet. 2019;394(10198):587–95.
Article CAS PubMed Google Scholar
Atila C, Gaisl O, Vogt DR, Werlen L, Szinnai G, Christ-Crain M. Glucagon-stimulated copeptin measurements in the differential diagnosis of Diabetes insipidus: a double-blind, randomized, placebo-controlled study. Eur J Endocrinol. 2022;187(1):65–74. https://doi.org/10.1530/eje-22-0033. (In eng).
Article CAS PubMed Google Scholar
Prentice M. Time for change: renaming Diabetes insipidus to improve patient safety. Clin Endocrinol (Oxf). 2018;88(5):625–6. https://doi.org/10.1111/cen.13578. (In eng).
Atila C, Loughrey PB, Garrahy A, et al. Central Diabetes insipidus from a patient’s perspective: management, psychological co-morbidities, and renaming of the condition: results from an international web-based survey. Lancet Diabetes Endocrinol. 2022;10(10):700–9. https://doi.org/10.1016/s2213-8587(22)00219-4. (In eng).
Arima H, Cheetham T, Christ-Crain M, et al. Changing the name of Diabetes insipidus: a position statement of the Working Group for Renaming Diabetes Insipidus. Eur J Endocrinol. 2022;187(5):P1–p3. https://doi.org/10.1530/eje-22-0751. (In eng).
Article CAS PubMed Google Scholar
Babey M, Kopp P, Robertson GL. Familial forms of Diabetes insipidus: clinical and molecular characteristics. Nat Rev Endocrinol. 2011;7(12):701–14. https://doi.org/10.1038/nrendo.2011.100. (In eng).
Article CAS PubMed Google Scholar
Fujiwara TM, Bichet DG. Molecular biology of hereditary Diabetes insipidus. J Am Soc Nephrol. 2005;16(10):2836–46. https://doi.org/10.1681/asn.2005040371. (In eng).
Article CAS PubMed Google Scholar
Miller M, Dalakos T, Moses AM, Fellerman H, Streeten DH. Recognition of partial defects in antidiuretic hormone secretion. Ann Intern Med. 1970;73(5):721–9. https://doi.org/10.7326/0003-4819-73-5-721. (In eng).
Article CAS PubMed Google Scholar
Rivier C, Vale W. Modulation of stress-induced ACTH release by corticotropin-releasing factor, catecholamines and vasopressin. Nature. 1983;305(5932):325–7. https://doi.org/10.1038/305325a0. (In eng).
Article CAS PubMed Google Scholar
Gillies GE, Linton EA, Lowry PJ. Corticotropin releasing activity of the new CRF is potentiated several times by vasopressin. Nature. 1982;299(5881):355–7. https://doi.org/10.1038/299355a0. (In eng).
Article CAS PubMed Google Scholar
Nagy G, Mulchahey JJ, Smyth DG, Neill JD. The glycopeptide moiety of vasopressin-neurophysin precursor is neurohypophysial prolactin releasing factor. Biochem Biophys Res Commun. 1988;151(1):524–9. https://doi.org/10.1016/0006-291x(88)90625-0. (In eng).
Article CAS PubMed Google Scholar
Hyde JF, Ben-Jonathan N. The posterior pituitary contains a potent prolactin-releasing factor: in vivo studies. Endocrinology. 1989;125(2):736–41. https://doi.org/10.1210/endo-125-2-736. (In eng).
Article CAS PubMed Google Scholar
Barat C, Simpson L, Breslow E. Properties of human vasopressin precursor constructs: inefficient monomer folding in the absence of copeptin as a potential contributor to Diabetes insipidus. Biochemistry. 2004;43(25):8191–203. https://doi.org/10.1021/bi0400094. (In eng).
Article CAS PubMed Google Scholar
Wun T. Vasopressin and platelets: a concise review. Platelets. 1997;8(1):15–22. https://doi.org/10.1080/09537109777492. (In eng).
Article CAS PubMed Google Scholar
Preibisz JJ, Sealey JE, Laragh JH, Cody RJ, Weksler BB. Plasma and platelet vasopressin in Essential Hypertension and Congestive Heart Failure. Hypertension. 1983;5(2 Pt 2):I129–38. https://doi.org/10.1161/01.hyp.5.2_pt_2.i129. (In eng).
Article CAS PubMed Google Scholar
Jane Ellis M, Livesey JH, Evans MJ. Hormone stability in human whole blood. Clin Biochem. 2003;36(2):109–12. https://doi.org/10.1016/s0009-9120(02)00440-x. (In eng).
Article CAS PubMed Google Scholar
Baumann G, Dingman JF. Distribution, blood transport, and degradation of antidiuretic hormone in man. J Clin Invest. 1976;57(5):1109–16. https://doi.org/10.1172/jci108377. (In eng).
Article CAS PubMed PubMed Central Google Scholar
Morgenthaler NG, Struck J, Alonso C, Bergmann A. Assay for the measurement of copeptin, a stable peptide derived from the precursor of vasopressin. Clin Chem. 2006;52(1):112–9. https://doi.org/10.1373/clinchem.2005.060038. (In eng).
Article CAS PubMed Google Scholar
Balanescu S, Kopp P, Gaskill MB, Morgenthaler NG, Schindler C, Rutishauser J. Correlation of plasma copeptin and vasopressin concentrations in hypo-, iso-, and Hyperosmolar States. J Clin Endocrinol Metab. 2011;96(4):1046–52. https://doi.org/10.1210/jc.2010-2499. (In eng).
Article CAS PubMed Google Scholar
Fenske WK, Schnyder I, Koch G, et al. Release and decay kinetics of Copeptin vs AVP in response to osmotic alterations in healthy volunteers. J Clin Endocrinol Metab. 2018;103(2):505–13. https://doi.org/10.1210/jc.2017-01891. (In eng).
Bhandari SS, Loke I, Davies JE, Squire IB, Struck J, Ng LL. Gender and renal function influence plasma levels of copeptin in healthy individuals. Clin Sci (Lond). 2009;116(3):257–63. https://doi.org/10.1042/cs20080140. (In eng).
Article CAS PubMed Google Scholar
Darzy KH, Dixit KC, Shalet SM, Morgenthaler NG, Brabant G. Circadian secretion pattern of copeptin, the C-terminal vasopressin precursor fragment. Clin Chem. 2010;56(7):1190–1. https://doi.org/10.1373/clinchem.2009.141689. (In eng).
Article CAS PubMed Google Scholar
Beglinger S, Drewe J, Christ-Crain M. The circadian rhythm of Copeptin, the C-Terminal portion of Arginine Vasopressin. J Biomark. 2017;2017:4737082. https://doi.org/10.1155/2017/4737082. (In eng).
Article CAS PubMed PubMed Central Google Scholar
Walti C, Siegenthaler J, Christ-Crain M. Copeptin levels are Independent of ingested nutrient type after standardised meal administration–the CoMEAL study. Biomarkers. 2014;19(7):557–62. https://doi.org/10.3109/1354750x.2014.940504. (In eng).
Comments (0)