The duality of amyloid-β: its role in normal and Alzheimer’s disease states

Castellani RJ, Rolston RK, Smith MA. Alzheimer disease. Dis Mon. 2010;56(9):484–546. https://doi.org/10.1016/j.disamonth.2010.06.001.

Article  PubMed  PubMed Central  Google Scholar 

Sosa-Ortiz AL, Acosta-Castillo I, Prince MJ. Epidemiology of dementias and Alzheimer’s Disease. Arch Med Res. 2012;43(8):600–8. https://doi.org/10.1016/j.arcmed.2012.11.003.

Article  PubMed  Google Scholar 

Cullum CM, Rosenberg RN. Memory loss—when is it Alzheimer Disease? JAMA. 1998;279(21):1689–90. https://doi.org/10.1001/jama.279.21.1689.

Article  CAS  PubMed  Google Scholar 

Bloom GS. Amyloid-β and tau: the trigger and bullet in Alzheimer disease pathogenesis. JAMA Neurol. 2014;71(4):505–8. https://doi.org/10.1001/jamaneurol.2013.5847.

Article  PubMed  Google Scholar 

Chen ZR, Huang JB, Yang SL, Hong FF. Role of Cholinergic Signaling in Alzheimer’s Disease. Molecules. 2022;27(6). https://doi.org/10.3390/molecules27061816.

Nordengen K, Kirsebom B-E, Henjum K, Selnes P, Gísladóttir B, Wettergreen M, et al. Glial activation and inflammation along the Alzheimer’s disease continuum. J Neuroinflamm. 2019;16(1):46. https://doi.org/10.1186/s12974-019-1399-2.

Article  Google Scholar 

Bhatia S, Rawal R, Sharma P, Singh T, Singh M, Singh V. Mitochondrial dysfunction in Alzheimer’s Disease: opportunities for Drug Development. Curr Neuropharmacol. 2022;20(4):675–92. https://doi.org/10.2174/1570159x19666210517114016.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Govindpani K, McNamara LG, Smith NR, Vinnakota C, Waldvogel HJ, Faull RL, Kwakowsky A. Vascular Dysfunction in Alzheimer’s Disease: A Prelude to the Pathological Process or a Consequence of It? J Clin Med. 2019;8(5). https://doi.org/10.3390/jcm8050651.

Ge M, Zhang J, Chen S, Huang Y, Chen W, He L, Zhang Y. Role of Calcium Homeostasis in Alzheimer’s Disease. Neuropsychiatr Dis Treat. 2022;18:487–98. https://doi.org/10.2147/ndt.S350939.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cassidy L, Fernandez F, Johnson JB, Naiker M, Owoola AG, Broszczak DA. Oxidative stress in alzheimer’s disease: a review on emergent natural polyphenolic therapeutics. Complement Ther Med. 2020;49:102294. https://doi.org/10.1016/j.ctim.2019.102294.

Article  PubMed  Google Scholar 

Pelucchi S, Gardoni F, Di Luca M, Marcello E. Synaptic dysfunction in early phases of Alzheimer’s Disease. Handb Clin Neurol. 2022;184:417–38. https://doi.org/10.1016/b978-0-12-819410-2.00022-9.

Article  PubMed  Google Scholar 

Mohandas E, Rajmohan V, Raghunath B. Neurobiology of Alzheimer’s disease. Indian J Psychiatry. 2009;51(1):55–61. https://doi.org/10.4103/0019-5545.44908.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Azargoonjahromi A, Abutalebian F. Unraveling the therapeutic efficacy of resveratrol in Alzheimer’s disease: an umbrella review of systematic evidence. Nutr Metabolism. 2024;21(1):15. https://doi.org/10.1186/s12986-024-00792-1.

Article  Google Scholar 

Prvulovic D, Hampel H. Amyloid β (Aβ) and phospho-tau (p-tau) as diagnostic biomarkers in Alzheimer’s disease. Clin Chem Lab Med. 2011;49(3):367–74. https://doi.org/10.1515/cclm.2011.087.

Article  CAS  PubMed  Google Scholar 

Mormino EC, Papp KV. Amyloid Accumulation and Cognitive decline in clinically normal older individuals: implications for aging and early Alzheimer’s Disease. J Alzheimers Dis. 2018;64(s1):S633–46. https://doi.org/10.3233/jad-179928.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang S, Mims PN, Roman RJ, Fan F. Is Beta-Amyloid Accumulation a Cause or Consequence of Alzheimer’s Disease? J Alzheimers Parkinsonism Dement. 2016;1(2).

Ito S, Yagi R, Ogata S, Masuda T, Saito T, Saido T, Ohtsuki S. Proteomic alterations in the brain and blood–brain barrier during brain Aβ accumulation in an APP knock-in mouse model of Alzheimer’s disease. Fluids Barriers CNS. 2023;20(1):66. https://doi.org/10.1186/s12987-023-00466-9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhou Z-d, Chan CH-s, Ma Q-h, Xu X-h, Xiao Z-c, Tan E-K. The roles of amyloid precursor protein (APP) in neurogenesis. Cell Adhes Migr. 2011;5(4):280–92. https://doi.org/10.4161/cam.5.4.16986.

Article  Google Scholar 

Karisetty BC, Bhatnagar A, Armour EM, Beaver M, Zhang H, Elefant F. Amyloid-β peptide impact on synaptic function and neuroepigenetic Gene Control Reveal New Therapeutic Strategies for Alzheimer’s Disease. Front Mol Neurosci. 2020;13. https://doi.org/10.3389/fnmol.2020.577622.

Azargoonjahromi A. Dual role of nitric oxide in Alzheimer’s disease. Nitric Oxide. 2023;134–135:23–37. https://doi.org/10.1016/j.niox.2023.03.003.

Article  CAS  PubMed  Google Scholar 

O’Brien RJ, Wong PC. Amyloid precursor protein processing and Alzheimer’s disease. Annu Rev Neurosci. 2011;34:185–204. https://doi.org/10.1146/annurev-neuro-061010-113613.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kojro E, Fahrenholz F. The non-amyloidogenic pathway: structure and function of alpha-secretases. Subcell Biochem. 2005;38:105–27. https://doi.org/10.1007/0-387-23226-5_5.

Article  CAS  PubMed  Google Scholar 

Suri K, Ramesh M, Bhandari M, Gupta V, Kumar V, Govindaraju T, Murugan NA. Role of amyloidogenic and non-amyloidogenic protein spaces in neurodegenerative diseases and their mitigation using Theranostic agents. ChemBioChem. 2024:e202400224.

de Paula VJR, Guimarães FM, Diniz BS, Forlenza OV. Neurobiological pathways to Alzheimer’s disease: Amyloid-beta, TAU protein or both? Dement Neuropsychol. 2009;3(3):188–94. https://doi.org/10.1590/s1980-57642009dn30300003.

Article  PubMed  PubMed Central  Google Scholar 

Azargoonjahromi A. Immunotherapy in Alzheimer’s disease: focusing on the efficacy of gantenerumab on amyloid-β clearance and cognitive decline. J Pharm Pharmacol. 2024;rgae066. https://doi.org/10.1093/jpp/rgae066.

Sun X, Chen W-D, Wang Y-D. β-Amyloid: the key peptide in the pathogenesis of Alzheimer’s Disease. Front Pharmacol. 2015;6. https://doi.org/10.3389/fphar.2015.00221.

Hampel H, Hardy J, Blennow K, Chen C, Perry G, Kim SH, et al. The Amyloid-β pathway in Alzheimer’s Disease. Mol Psychiatry. 2021;26(10):5481–503. https://doi.org/10.1038/s41380-021-01249-0.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Haass C, Schlossmacher MG, Hung AY, Vigo-Pelfrey C, Mellon A, Ostaszewski BL, et al. Amyloid beta-peptide is produced by cultured cells during normal metabolism. Nature. 1992;359(6393):322–5. https://doi.org/10.1038/359322a0.

Article  CAS  PubMed  Google Scholar 

Busciglio J, Gabuzda DH, Matsudaira P, Yankner BA. Generation of beta-amyloid in the secretory pathway in neuronal and nonneuronal cells. Proc Natl Acad Sci U S A. 1993;90(5):2092–6. https://doi.org/10.1073/pnas.90.5.2092.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen M, Inestrosa NC, Ross GS, Fernandez HL. Platelets are the primary source of amyloid beta-peptide in human blood. Biochem Biophys Res Commun. 1995;213(1):96–103. https://doi.org/10.1006/bbrc.1995.2103.

Article  CAS  PubMed  Google Scholar 

Weaver DF. Amyloid beta is an early responder cytokine and immunopeptide of the innate immune system. Alzheimers Dement (N Y). 2020;6(1):e12100. https://doi.org/10.1002/trc2.12100.

Article  PubMed  Google Scholar 

Frackowiak J, Miller DL, Potempska A, Sukontasup T, Mazur-Kolecka B. Secretion and Accumulation of Aβ by brain vascular smooth muscle cells from AβPP-Swedish transgenic mice. J Neuropathology Experimental Neurol. 2003;62(6):685–96. https://doi.org/10.1093/jnen/62.6.685.

Article  CAS  Google Scholar 

Brothers HM, Gosztyla ML, Robinson SR. The physiological roles of Amyloid-β peptide hint at New Ways to treat Alzheimer’s Disease. Front Aging Neurosci. 2018;10:118. https://doi.org/10.3389/fnagi.2018.00118.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nhan HS, Chiang K, Koo EH. The multifaceted nature of amyloid precursor protein and its proteolytic fragments: friends and foes. Acta Neuropathol. 2015;129(1):1–19.

Comments (0)

No login
gif