Zinc-alkaline phosphatase at sites of aortic calcification

Anderson HC, Harmey D, Camacho NP, Garimella R, Sipe JB, Tague S, Bi X, Johnson K, Terkeltaub R, Millán JL (2005) Sustained osteomalacia of long bones despite major improvement in other hypophosphatasia-related mineral deficits in tissue nonspecific alkaline phosphatase/nucleotide pyrophosphatase phosphodiesterase 1 double-deficient mice. Am J Pathol 166(6):1711–1720. https://doi.org/10.1016/S0002-9440(10)62481-9

Article  CAS  PubMed  PubMed Central  Google Scholar 

Arzac A, López-Cepero JM, Babushkina EA, Gomez S (2018) Applying methods of hard tissues preparation for wood anatomy: imaging polished samples embedded in polymethylmethacrylate. Dendrochronologia 51:76–81. https://doi.org/10.1016/j.dendro.2018.08.005

Article  Google Scholar 

Bonucci E, Gomez S (2012) Cartilage calcification. In: Seto J (ed) Advanced topics in Biomineralization. INTECH Open Access, pp 85–110

Bradley DA, Moger CJ, Winlove CP (2007) Zn deposition at the bone–cartilage interface in equine articular cartilage. Nucl Instrum Methods Phys Res A 580(1):473–476. https://doi.org/10.1016/j.nima.2007.05.143

Article  CAS  Google Scholar 

Bromage TG, Gomez S, Boyde A Imaging hard–inside the skeleton. InFocus (Proceedings of the royal microscopical Society) 49:4–31., Chichocki T, Gonsior B, Höfert M, Jarczyk L, Raith B, Rokita E, Strazalkowski A, Sych M (2018) (1988) Measurements of mineralization process in the femur growth plate and rib cartilage of the mouse using pixe in combination with a proton microprobe. Histochemistry 89:99–104. https://doi.org/10.1007/BF00496591

Danscher G, Stoltenberg M, Bruhn M, Søndergaard C, Jensen D (2004) Immersion autometallography: histochemical in situ capturing of zinc ions in catalytic zinc-sulfur nanocrystals. J Histochem Cytochem 52(12):1619–1625. https://doi.org/10.1369/jhc.4A6371.2004

Article  CAS  PubMed  Google Scholar 

De Bernard B, Bianco P, Bonucci E, Costantini M, Lunazzi GC, Martinuzzi P, Modricky L, Panfili E, Pollesello P (1986) Biochemical and immunohistochemical evidence that in cartilage an alkaline phosphatase is a Ca2+-binding glycoprotein. J Cell Biol 103(4):1615–1623. https://doi.org/10.1083/jcb.103.4.1615

Article  PubMed  Google Scholar 

Dean C, Le Cabec A, Spiers K, Zhang Y, Garrevoet J (2018) Incremental distribution of strontium and zinc in great ape and fossil hominin cementum using synchrotron X-ray fluorescence mapping. J R Soc Interface 15(138):20170626. https://doi.org/10.1098/rsif.2017.0626

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dean MC, Spiers KM, Garrevoet J, Le Cabec A (2019) Synchrotron X-ray fluorescence mapping of Ca, Sr and Zn at the neonatal line in human deciduous teeth reflects changing perinatal physiology. Arch Oral Biol 104:90–102. https://doi.org/10.1016/j.archoralbio.2019.05.024

Article  CAS  PubMed  Google Scholar 

Dean MC, Garrevoet J, Van Malderen SJ, Santos F, Mirazón Lahr M, Foley R, Le Cabec A (2023) The distribution and Biogenic Origins of Zinc in the Mineralised Tooth Tissues of Modern and Fossil hominoids: implications for Life History, Diet and Taphonomy. Biology 12(12):1455. https://doi.org/10.3390/biology12121455

Article  CAS  PubMed  PubMed Central  Google Scholar 

Doty SB, Jones KW, Kraner HW, Shroy RE, Hanson AL (1981) Proton microprobe analysis of zinc in skeletal tissues. Nucl Instrum Methods 181(1–3):159–164. https://doi.org/10.1016/0029-554X(81)90599-1

Article  CAS  Google Scholar 

Fedde KN, Blair L, Silverstein J, Coburn SP, Ryan LM, Weinstein RS, Waymire K, Narisawa S, Millán JL, Macgregor GR, Whyte MP (1999) Alkaline phosphatase knock-out mice recapitulate the metabolic and skeletal defects of infantile hypophosphatasia. J Bone Min Res 14(12):2015–2026. https://doi.org/10.1359/jbmr.1999.14.12.2015

Article  CAS  Google Scholar 

Genge BR, Sauer GR, Wu LN, McLean FM, Wuthier RE (1988) Correlation between loss of alkaline phosphatase activity and accumulation of calcium during matrix vesicle-mediated mineralization. J Biol Chem 263(34):18513–18519. https://doi.org/10.1016/S0021-9258(19)81388-1

Article  CAS  PubMed  Google Scholar 

Gomez S, Boyde A (1994) Correlated alkaline phosphatase histochemistry and quantitative backscattered electron imaging in the study of rat incisor ameloblasts and enamel mineralization. Microsc Res Tech 29(1):29–36. https://doi.org/10.1002/jemt.1070290105

Article  CAS  PubMed  Google Scholar 

Gomez S, Rizzo R, Pozzi-Mucelli M, Bonucci E, Vittur F (1999) Zinc mapping in bone tissues by histochemistry and synchrotron radiation–induced X-ray emission: correlation with the distribution of alkaline phosphatase. Bone 25(1):33–38. https://doi.org/10.1016/S8756-3282(99)00102-7

Article  CAS  PubMed  Google Scholar 

Gomez S, Preoteasa EA, Harangus L, Iordan A, Grambole D, Herrmann F (2006) Micro-PIXE and histochemical studies of Zn and Ca distribution in normal bone. Nucl Instrum Methods Phys Res B 249(1–2):673–676. https://doi.org/10.1016/j.nimb.2006.03.077

Article  CAS  Google Scholar 

Gorski JP, Wang A, Lovitch D, Law D, Powell K, Midura RJ (2004) Extracellular bone acidic glycoprotein-75 defines condensed mesenchyme regions to be mineralized and localizes with bone sialoprotein during intramembranous bone formation. J Biol Chem 279(24):25455–25463. https://doi.org/10.1074/jbc.M312408200

Article  CAS  PubMed  Google Scholar 

Haumont S (1961) Distribution of zinc in bone tissue. J Histochem Cytochem 9(2):141–145. https://doi.org/10.1177/9.2.141

Article  CAS  PubMed  Google Scholar 

Hoshi K, Ejiri S, Ozawa H (2001) Localizational alterations of calcium, phosphorus, and calcification-related organics such as proteoglycans and alkaline phosphatase during bone calcification. J Bone Min Res 16(2):289–298. https://doi.org/10.1359/jbmr.2001.16.2.289

Article  CAS  Google Scholar 

Hoylaerts MF, Van Kerckhoven S, Kiffer-Moreira T, Sheen C, Narisawa S, Millán JL (2015) Functional significance of calcium binding to tissue-nonspecific alkaline phosphatase. PLoS ONE 10(3):e0119874. https://doi.org/10.1371/journal.pone.0119874

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kaabar W, Gundogdu O, Laklouk A, Bunk O, Pfeiffer F, Farquharson MJ, Bradley DA (2010) µ-PIXE and SAXS studies at the bone–cartilage interface. Appl Radiat Isot 68(4–5):730–734. https://doi.org/10.1016/j.apradiso.2009.09.038

Article  CAS  PubMed  Google Scholar 

Kierdorf U, Stock SR, Gomez S, Antipova O, Kierdorf H (2022) Distribution, structure, and mineralization of calcified cartilage remnants in hard antlers. Bone Rep 16:101571. https://doi.org/10.1016/j.bonr.2022.101571

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kierdorf U, Gomez S, Stock SR, Antipova O, Kierdorf H (2023) Bone resorption and formation in the pedicles of European roe deer (Capreolus capreolus) in relation to the antler cycle—A morphological and microanalytical study. J Anat 43:842–859. https://doi.org/10.1111/joa.13908

Article  CAS  Google Scholar 

Martin RR, Naftel SJ, Nelson AJ, Feilen AB, Narvaez A (2004) Synchrotron X-ray fluorescence and trace metals in the cementum rings of human teeth. J Environ Monit 6(10):783–786. https://doi.org/10.1039/B408525F

Article  CAS  PubMed  Google Scholar 

Meyer JL (1984) Can biological calcification occur in the presence of pyrophosphate? Arch Biochem Biophys 231(1):1–8. https://doi.org/10.1016/0003-9861(84)90356-4

Article  CAS  PubMed  Google Scholar 

Midura RJ, Vasanji A, Su X, Wang A, Midura SB, Gorski JP (2007) Calcospherulites isolated from the mineralization front of bone induce the mineralization of type I collagen. Bone 41(6):1005–1016. https://doi.org/10.1016/j.bone.2007.08.036

Article  CAS  PubMed  PubMed Central  Google Scholar 

Millán JL (2006) Mammalian alkaline phosphatases: from biology to applications in medicine and biotechnology. Wiley

Millán JL, Whyte MP (2016) Alkaline phosphatase and hypophosphatasia. Calcif Tissue Int 98(4):398–416. https://doi.org/10.1007/s00223-015-0079-1

Article  CAS  PubMed  Google Scholar 

Mornet E, Stura E, Lia-Baldini AS, Stigbrand T, Ménez A, Le Du MH (2001) Structural evidence for a functional role of human tissue nonspecific alkaline phosphatase in bone mineralization. J Biol Chem 276(33):31171–31178. https://doi.org/10.1074/jbc.M102788200

Article  CAS  PubMed  Google Scholar 

Narisawa S, Fröhlander N, Millán JL (1997) Inactivation of two mouse alkaline phosphatase genes and establishment of a model of infantile hypophosphatasia. Dev Dyn 208(3):432–446.

Comments (0)

No login
gif