Anderson HC, Harmey D, Camacho NP, Garimella R, Sipe JB, Tague S, Bi X, Johnson K, Terkeltaub R, Millán JL (2005) Sustained osteomalacia of long bones despite major improvement in other hypophosphatasia-related mineral deficits in tissue nonspecific alkaline phosphatase/nucleotide pyrophosphatase phosphodiesterase 1 double-deficient mice. Am J Pathol 166(6):1711–1720. https://doi.org/10.1016/S0002-9440(10)62481-9
Article CAS PubMed PubMed Central Google Scholar
Arzac A, López-Cepero JM, Babushkina EA, Gomez S (2018) Applying methods of hard tissues preparation for wood anatomy: imaging polished samples embedded in polymethylmethacrylate. Dendrochronologia 51:76–81. https://doi.org/10.1016/j.dendro.2018.08.005
Bonucci E, Gomez S (2012) Cartilage calcification. In: Seto J (ed) Advanced topics in Biomineralization. INTECH Open Access, pp 85–110
Bradley DA, Moger CJ, Winlove CP (2007) Zn deposition at the bone–cartilage interface in equine articular cartilage. Nucl Instrum Methods Phys Res A 580(1):473–476. https://doi.org/10.1016/j.nima.2007.05.143
Bromage TG, Gomez S, Boyde A Imaging hard–inside the skeleton. InFocus (Proceedings of the royal microscopical Society) 49:4–31., Chichocki T, Gonsior B, Höfert M, Jarczyk L, Raith B, Rokita E, Strazalkowski A, Sych M (2018) (1988) Measurements of mineralization process in the femur growth plate and rib cartilage of the mouse using pixe in combination with a proton microprobe. Histochemistry 89:99–104. https://doi.org/10.1007/BF00496591
Danscher G, Stoltenberg M, Bruhn M, Søndergaard C, Jensen D (2004) Immersion autometallography: histochemical in situ capturing of zinc ions in catalytic zinc-sulfur nanocrystals. J Histochem Cytochem 52(12):1619–1625. https://doi.org/10.1369/jhc.4A6371.2004
Article CAS PubMed Google Scholar
De Bernard B, Bianco P, Bonucci E, Costantini M, Lunazzi GC, Martinuzzi P, Modricky L, Panfili E, Pollesello P (1986) Biochemical and immunohistochemical evidence that in cartilage an alkaline phosphatase is a Ca2+-binding glycoprotein. J Cell Biol 103(4):1615–1623. https://doi.org/10.1083/jcb.103.4.1615
Dean C, Le Cabec A, Spiers K, Zhang Y, Garrevoet J (2018) Incremental distribution of strontium and zinc in great ape and fossil hominin cementum using synchrotron X-ray fluorescence mapping. J R Soc Interface 15(138):20170626. https://doi.org/10.1098/rsif.2017.0626
Article CAS PubMed PubMed Central Google Scholar
Dean MC, Spiers KM, Garrevoet J, Le Cabec A (2019) Synchrotron X-ray fluorescence mapping of Ca, Sr and Zn at the neonatal line in human deciduous teeth reflects changing perinatal physiology. Arch Oral Biol 104:90–102. https://doi.org/10.1016/j.archoralbio.2019.05.024
Article CAS PubMed Google Scholar
Dean MC, Garrevoet J, Van Malderen SJ, Santos F, Mirazón Lahr M, Foley R, Le Cabec A (2023) The distribution and Biogenic Origins of Zinc in the Mineralised Tooth Tissues of Modern and Fossil hominoids: implications for Life History, Diet and Taphonomy. Biology 12(12):1455. https://doi.org/10.3390/biology12121455
Article CAS PubMed PubMed Central Google Scholar
Doty SB, Jones KW, Kraner HW, Shroy RE, Hanson AL (1981) Proton microprobe analysis of zinc in skeletal tissues. Nucl Instrum Methods 181(1–3):159–164. https://doi.org/10.1016/0029-554X(81)90599-1
Fedde KN, Blair L, Silverstein J, Coburn SP, Ryan LM, Weinstein RS, Waymire K, Narisawa S, Millán JL, Macgregor GR, Whyte MP (1999) Alkaline phosphatase knock-out mice recapitulate the metabolic and skeletal defects of infantile hypophosphatasia. J Bone Min Res 14(12):2015–2026. https://doi.org/10.1359/jbmr.1999.14.12.2015
Genge BR, Sauer GR, Wu LN, McLean FM, Wuthier RE (1988) Correlation between loss of alkaline phosphatase activity and accumulation of calcium during matrix vesicle-mediated mineralization. J Biol Chem 263(34):18513–18519. https://doi.org/10.1016/S0021-9258(19)81388-1
Article CAS PubMed Google Scholar
Gomez S, Boyde A (1994) Correlated alkaline phosphatase histochemistry and quantitative backscattered electron imaging in the study of rat incisor ameloblasts and enamel mineralization. Microsc Res Tech 29(1):29–36. https://doi.org/10.1002/jemt.1070290105
Article CAS PubMed Google Scholar
Gomez S, Rizzo R, Pozzi-Mucelli M, Bonucci E, Vittur F (1999) Zinc mapping in bone tissues by histochemistry and synchrotron radiation–induced X-ray emission: correlation with the distribution of alkaline phosphatase. Bone 25(1):33–38. https://doi.org/10.1016/S8756-3282(99)00102-7
Article CAS PubMed Google Scholar
Gomez S, Preoteasa EA, Harangus L, Iordan A, Grambole D, Herrmann F (2006) Micro-PIXE and histochemical studies of Zn and Ca distribution in normal bone. Nucl Instrum Methods Phys Res B 249(1–2):673–676. https://doi.org/10.1016/j.nimb.2006.03.077
Gorski JP, Wang A, Lovitch D, Law D, Powell K, Midura RJ (2004) Extracellular bone acidic glycoprotein-75 defines condensed mesenchyme regions to be mineralized and localizes with bone sialoprotein during intramembranous bone formation. J Biol Chem 279(24):25455–25463. https://doi.org/10.1074/jbc.M312408200
Article CAS PubMed Google Scholar
Haumont S (1961) Distribution of zinc in bone tissue. J Histochem Cytochem 9(2):141–145. https://doi.org/10.1177/9.2.141
Article CAS PubMed Google Scholar
Hoshi K, Ejiri S, Ozawa H (2001) Localizational alterations of calcium, phosphorus, and calcification-related organics such as proteoglycans and alkaline phosphatase during bone calcification. J Bone Min Res 16(2):289–298. https://doi.org/10.1359/jbmr.2001.16.2.289
Hoylaerts MF, Van Kerckhoven S, Kiffer-Moreira T, Sheen C, Narisawa S, Millán JL (2015) Functional significance of calcium binding to tissue-nonspecific alkaline phosphatase. PLoS ONE 10(3):e0119874. https://doi.org/10.1371/journal.pone.0119874
Article CAS PubMed PubMed Central Google Scholar
Kaabar W, Gundogdu O, Laklouk A, Bunk O, Pfeiffer F, Farquharson MJ, Bradley DA (2010) µ-PIXE and SAXS studies at the bone–cartilage interface. Appl Radiat Isot 68(4–5):730–734. https://doi.org/10.1016/j.apradiso.2009.09.038
Article CAS PubMed Google Scholar
Kierdorf U, Stock SR, Gomez S, Antipova O, Kierdorf H (2022) Distribution, structure, and mineralization of calcified cartilage remnants in hard antlers. Bone Rep 16:101571. https://doi.org/10.1016/j.bonr.2022.101571
Article CAS PubMed PubMed Central Google Scholar
Kierdorf U, Gomez S, Stock SR, Antipova O, Kierdorf H (2023) Bone resorption and formation in the pedicles of European roe deer (Capreolus capreolus) in relation to the antler cycle—A morphological and microanalytical study. J Anat 43:842–859. https://doi.org/10.1111/joa.13908
Martin RR, Naftel SJ, Nelson AJ, Feilen AB, Narvaez A (2004) Synchrotron X-ray fluorescence and trace metals in the cementum rings of human teeth. J Environ Monit 6(10):783–786. https://doi.org/10.1039/B408525F
Article CAS PubMed Google Scholar
Meyer JL (1984) Can biological calcification occur in the presence of pyrophosphate? Arch Biochem Biophys 231(1):1–8. https://doi.org/10.1016/0003-9861(84)90356-4
Article CAS PubMed Google Scholar
Midura RJ, Vasanji A, Su X, Wang A, Midura SB, Gorski JP (2007) Calcospherulites isolated from the mineralization front of bone induce the mineralization of type I collagen. Bone 41(6):1005–1016. https://doi.org/10.1016/j.bone.2007.08.036
Article CAS PubMed PubMed Central Google Scholar
Millán JL (2006) Mammalian alkaline phosphatases: from biology to applications in medicine and biotechnology. Wiley
Millán JL, Whyte MP (2016) Alkaline phosphatase and hypophosphatasia. Calcif Tissue Int 98(4):398–416. https://doi.org/10.1007/s00223-015-0079-1
Article CAS PubMed Google Scholar
Mornet E, Stura E, Lia-Baldini AS, Stigbrand T, Ménez A, Le Du MH (2001) Structural evidence for a functional role of human tissue nonspecific alkaline phosphatase in bone mineralization. J Biol Chem 276(33):31171–31178. https://doi.org/10.1074/jbc.M102788200
Article CAS PubMed Google Scholar
Narisawa S, Fröhlander N, Millán JL (1997) Inactivation of two mouse alkaline phosphatase genes and establishment of a model of infantile hypophosphatasia. Dev Dyn 208(3):432–446.
Comments (0)