Williams R, Karuranga S, Malanda B, Saeedi P, Basit A, Besançon S, et al. Global and regional estimates and projections of diabetes-related health expenditure: results from the international diabetes federation diabetes atlas, 9th edition. Diabetes Research and Clinical Practice. 2020;162:108072.
Sempere-Bigorra M, Julián-Rochina I, Cauli O. Differences and similarities in neuropathy in type 1 and 2 diabetes: a systematic review. J Pers Med. 2021;11:230.
Article PubMed PubMed Central Google Scholar
Allen MD, Choi IH, Kimpinski K, Doherty TJ, Rice CL. Motor unit loss and weakness in association with diabetic neuropathy in humans. Muscle Nerve. 2013;48:298–300.
Feldman EL, Callaghan BC, Pop-Busui R, Zochodne DW, Wright DE, Bennett DL, et al. Diabetic neuropathy. Nat Rev Dis Primers. 2019;5:41.
Zakin E, Abrams R, Simpson DM. Diabetic neuropathy. Semin Neurol. 2019;39:560–9.
Aziz N, Dash B, Wal P, Kumari P, Joshi P, Wal A. New horizons in diabetic neuropathies: an updated review on their pathology, diagnosis, mechanism, screening techniques, pharmacological, and future approaches. Curr Diabetes Rev. 2024;20:e201023222416.
Tesfaye S, Kempler P. Painful diabetic neuropathy. Diabetologia. 2005;48:805–7.
Article CAS PubMed Google Scholar
Eaton SE, Harris ND, Ibrahim S, Patel KA, Selmi F, Radatz M, et al. Increased sural nerve epineurial blood flow in human subjects with painful diabetic neuropathy. Diabetologia. 2003;46:934–9.
Article CAS PubMed Google Scholar
Gandhi RA, Marques JL, Selvarajah D, Emery CJ, Tesfaye S. Painful diabetic neuropathy is associated with greater autonomic dysfunction than painless diabetic neuropathy. Diabetes Care. 2010;33:1585–90.
Article PubMed PubMed Central Google Scholar
Oyibo SO, Prasad YD, Jackson NJ, Jude EB, Boulton AJ. The relationship between blood glucose excursions and painful diabetic peripheral neuropathy: a pilot study. Diabet Med. 2002;19:870–3.
Article CAS PubMed Google Scholar
Selvarajah D, Wilkinson ID, Gandhi R, Griffiths PD, Tesfaye S. Microvascular perfusion abnormalities of the thalamus in painful but not painless diabetic polyneuropathy: a clue to the pathogenesis of pain in type 1 diabetes. Diabetes Care. 2011;34:718–20.
Article PubMed PubMed Central Google Scholar
Sorensen L, Molyneaux L, Yue DK. The relationship among pain, sensory loss, and small nerve fibers in diabetes. Diabetes Care. 2006;29:883–7.
Schreiber AK, Nones CF, Reis RC, Chichorro JG, Cunha JM. Diabetic neuropathic pain: physiopathology and treatment. World J Diabetes. 2015;6:432–44.
Article PubMed PubMed Central Google Scholar
Yorek M. Treatment for diabetic peripheral neuropathy: What have we learned from animal models? Curr Diabetes Rev. 2022;18:e040521193121.
Article CAS PubMed Google Scholar
Kobayashi M, Zochodne DW. Diabetic neuropathy and the sensory neuron: new aspects of pathogenesis and their treatment implications. J Diabetes Investig. 2018;9:1239–54.
Article CAS PubMed PubMed Central Google Scholar
Akkus G, Sert M. Diabetic foot ulcers: a devastating complication of diabetes mellitus continues non-stop in spite of new medical treatment modalities. World J Diabetes. 2022;13:1106–21.
Article PubMed PubMed Central Google Scholar
Elafros MA, Kvalsund MP, Callaghan BC. The global burden of polyneuropathy-in need of an accurate assessment. JAMA Neurol. 2022;79:537–8.
Article PubMed PubMed Central Google Scholar
Boulton AJM, Kempler P, Ametov A, Ziegler D. Whither pathogenetic treatments for diabetic polyneuropathy? Diabetes Metab Res Rev. 2013;29:327–33.
Article CAS PubMed Google Scholar
Akter S, Choubey M, Mohib MM, Arbee S, Sagor MAT, Mohiuddin MS. Stem cell therapy in diabetic polyneuropathy: recent advancements and future directions. Brain Sci. 2023;13:255.
Article CAS PubMed PubMed Central Google Scholar
Naruse K. Schwann cells as crucial players in diabetic neuropathy. In: Sango K, Yamauchi J, Ogata T, Susuki K, editors. Myelin: Basic and clinical advances. Singapore: Springer Singapore; 2019. p. 345–56.
Okawa T, Kamiya H, Himeno T, Kato J, Seino Y, Fujiya A, et al. Treatment of neural crest-like cells derived from induced pluripotent stem cells improves diabetic polyneuropathy in mice. Cell Transplant. 2013;22:1767–83.
Majd H, Amin S, Ghazizadeh Z, Cesiulis A, Arroyo E, Lankford K, Majd A, et al. Deriving Schwann cells from hPSCs enables disease modeling and drug discovery for diabetic peripheral neuropathy. Cell Stem Cell. 2023;30:632-47.e10.
Article CAS PubMed PubMed Central Google Scholar
De Gregorio C, Contador D, Díaz D, Cárcamo C, Santapau D, Lobos-Gonzalez L, et al. Human adipose-derived mesenchymal stem cell-conditioned medium ameliorates polyneuropathy and foot ulceration in diabetic BKS db/db mice. Stem Cell Res Ther. 2020;11:168.
Article PubMed PubMed Central Google Scholar
Zhang Z, Liu Y, Zhou J. Neuritin promotes bone marrow-derived mesenchymal stem cell migration to treat diabetic peripheral neuropathy. Mol Neurobiol. 2022;59:6666–83.
Article CAS PubMed Google Scholar
Margiana R, Markov A, Zekiy AO, Hamza MU, Al-Dabbagh KA, Al-Zubaidi SH, et al. Clinical application of mesenchymal stem cell in regenerative medicine: a narrative review. Stem Cell Res Ther. 2022;13:366.
Article CAS PubMed PubMed Central Google Scholar
Abbaszadeh H, Ghorbani F, Derakhshani M, Movassaghpour AA, Yousefi M, Talebi M, Shamsasenjan K. Regenerative potential of wharton’s jelly-derived mesenchymal stem cells: a new horizon of stem cell therapy. J Cell Physiol. 2020;235:9230–40.
Article CAS PubMed Google Scholar
Ryu KH, Cho KA, Park HS, Kim JY, Woo SY, Jo I, et al. Tonsil-derived mesenchymal stromal cells: evaluation of biologic, immunologic and genetic factors for successful banking. Cytotherapy. 2012;14:1193–202.
Article CAS PubMed Google Scholar
Lee HJ, Kim YH, Choi DW, Cho KA, Park JW, Shin SJ, et al. Tonsil-derived mesenchymal stem cells enhance allogeneic bone marrow engraftment via collagen iv degradation. Stem Cell Res Ther. 2021;12:329.
Article CAS PubMed PubMed Central Google Scholar
Choi JS, Lee BJ, Park HY, Song JS, Shin SC, Lee JC, et al. Effects of donor age, long-term passage culture, and cryopreservation on tonsil-derived mesenchymal stem cells. Cell Physiol Biochem. 2015;36:85–99.
Article CAS PubMed Google Scholar
Oh SY, Choi YM, Kim HY, Park YS, Jung SC, Park JW, et al. Application of tonsil-derived mesenchymal stem cells in tissue regeneration: concise review. Stem Cells. 2019;37:1252–60.
Jung N, Park S, Choi Y, Park JW, Hong YB, Park HH, et al. Tonsil-derived mesenchymal stem cells differentiate into a schwann cell phenotype and promote peripheral nerve regeneration. Int J Mol Sci. 2016;17:1867.
Article PubMed PubMed Central Google Scholar
Park S, Jung N, Myung S, Choi Y, Chung KW, Choi BO, Jung SC. Differentiation of human tonsil-derived mesenchymal stem cells into schwann-like cells improves neuromuscular function in a mouse model of charcot-marie-tooth disease type 1a. Int J Mol Sci. 2018;19:2393.
Article PubMed PubMed Central Google Scholar
Bosch-Queralt M, Fledrich R, Stassart RM. Schwann cell functions in peripheral nerve development and repair. Neurobiol Dis. 2023;176:105952.
Comments (0)