Nasiri N, Hosseini S, Alini M, Khademhosseini A, Baghaban EM. Targeted cell delivery for articular cartilage regeneration and osteoarthritis treatment. Drug Discov Today. 2019;24:2212–24.
Article CAS PubMed Google Scholar
Ng A, Bernhard K. Osteochondral autograft and allograft transplantation in the talus. Clin Podiatr Med Surg. 2017;34:461–9.
Langer R, Vacanti JP. Tissue engineering. Science. 1993;260:920–6.
Article CAS PubMed Google Scholar
Baei P, Daemi H, Aramesh F, Baharvand H, Eslaminejad MB. Advances in mechanically robust and biomimetic polysaccharide-based constructs for cartilage tissue engineering. Carbohydr Polym. 2023;308:120650.
Article CAS PubMed Google Scholar
Makris EA, Gomoll AH, Malizos KN, Hu JC, Athanasiou KA. Repair and tissue engineering techniques for articular cartilage. Nat Rev Rheumatol. 2015;11:21–34.
Article CAS PubMed Google Scholar
Ghosh S, Ak S, Seelbinder B, Barthold Je, Martin B, Kaonis S, et al. Dedifferentiation alters chondrocyte nuclear mechanics during in vitro culture and expansion. Biophys J. 2022;121:131–41.
Article CAS PubMed Google Scholar
Ma B, Leijten JCH, Wu L, Kip M, Van Blitterswijk CA, Post JN, et al. Gene expression profiling of dedifferentiated human articular chondrocytes in monolayer culture. Osteoarthr Cartil. 2013;21:599–603.
Hou M, Bai B, Tian B, Ci Z, Liu Y, Zhou G, et al. Cartilage regeneration characteristics of human and goat auricular chondrocytes. Front Bioeng Biotechnol. 2021;9:766363.
Article PubMed PubMed Central Google Scholar
Sl Ding X, Liu XZ, Kt Wang W, Xiong ZG, et al. Microcarriers in application for cartilage tissue engineering: Recent progress and challenges. Bioact Mater. 2022;17:81–108.
Zelinka A, Roelofs Aj, Kandel Ra, De Bari C. Cellular therapy and tissue engineering for cartilage repair. Osteoarthr Cartil. 2022;30:1547–60.
Rakic R, Bourdon B, Hervieu M, Branly T, Legendre F, Saulnier N, et al. RNA Interference and BMP-2 stimulation allows equine chondrocytes redifferentiation in 3D-Hypoxia cell culture model: application for matrix-induced autologous chondrocyte implantation. Int J Mol Sci. 2017;18:1842.
Article PubMed PubMed Central Google Scholar
Sewing J, Klinger M, Notbohm H. Jellyfish collagen matrices conserve the chondrogenic phenotype in two- and three-dimensional collagen matrices. J Tissue Eng Regen Med. 2017;11:916–25.
Article CAS PubMed Google Scholar
Takahashi T, Ogasawara T, Asawa Y, Mori Y, Uchinuma E, Takato T, et al. Three-dimensional microenvironments retain chondrocyte phenotypes during proliferation culture. J Tissue Eng. 2007;13:1583–92.
Pahoff S, Meinert C, Bas O, Nguyen L, Klein Tj, Hutmacher Dw. Effect of gelatin source and photoinitiator type on chondrocyte redifferentiation in gelatin methacryloyl-based tissue-engineered cartilage constructs. J Mater Chem B. 2019;7:1761–72.
Article CAS PubMed Google Scholar
Huang X, Zhong L, Post Jn, Karperien M. Co-treatment of TGF-β3 and BMP7 is superior in stimulating chondrocyte redifferentiation in both hypoxia and normoxia compared to single treatments. Sci Rep. 2018;8:10251.
Article PubMed PubMed Central Google Scholar
He AJ, Ye AQ, Song N, Liu NH, Zhou GD, Liu YQ, et al. Phenotypic redifferentiation of dedifferentiated microtia chondrocytes through a three-dimensional chondrogenic culture system. Am J Transl Res. 2020;12:2903–15.
PubMed PubMed Central Google Scholar
Duan L, Liang YJ, Ma B, Wang DM, Liu W, Huang JH, et al. DNA methylation profiling in chondrocyte dedifferentiation in vitro. J Cell Physiol. 2017;232:1708–16.
Article CAS PubMed Google Scholar
Wuest SL, Calio M, Wernas T, Tanner S, Giger-Lange C, Wyss F, et al. Influence of mechanical unloading on articular chondrocyte dedifferentiation. Int J Mol Sci. 2018;19:1289.
Article PubMed PubMed Central Google Scholar
Chen L, Xu JY, Lv S, Zhao Y, Sun DJ, Zheng YY, et al. Overexpression of long non-coding RNA AP001505.9 inhibits human hyaline chondrocyte dedifferentiation. Aging-Us. 2021;13:11433–54.
Chen YS, Yu YK, Wen Y, Chen J, Lin JX, Sheng ZX, et al. A high-resolution route map reveals distinct stages of chondrocyte dedifferentiation for cartilage regeneration. Bone Res. 2022;10:38.
Article CAS PubMed PubMed Central Google Scholar
Feng C, Chan WCW, Lam Y, Wang X, Chen P, Niu B, et al. Lgr5 and Col22a1 mark progenitor cells in the lineage toward juvenile articular chondrocytes. Stem Cell Rep. 2019;13:713–29.
Hsu SY, Liang SG, Hsueh AJ. Characterization of two LGR genes homologous to gonadotropin and thyrotropin receptors with extracellular leucine-rich repeats and a G protein-coupled, seven-transmembrane region. Mol Endocrinol. 1998;12:1830–45.
Article CAS PubMed Google Scholar
Barker N, Van Es JH, Kuipers J, Kujala P, Van Den Born M, Cozijnsen M, et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature. 2007;449:1003–7.
Article CAS PubMed Google Scholar
Wang X, Chen H, Tian R, Zhang Y, Drutskaya Ms, Wang C, et al. Macrophages induce AKT/β-catenin-dependent Lgr5 + stem cell activation and hair follicle regeneration through TNF. Nature Commun. 2017;8:14091.
Sato T, Van Es JH, Snippert HJ, Stange DE, Vries RG, Van Den Born M, et al. Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature. 2011;469:415–8.
Article CAS PubMed Google Scholar
Junttila MR, Mao W, Wang X, Wang BE, Pham T, Flygare J, et al. Targeting LGR5+cells with an antibody-drug conjugate for the treatment of colon cancer. Sci Transl Med. 2015;7:314ra186.
Hao Y, Hao S, Andersen-Nissen E, Mauck WM, Zheng S, Butler A, et al. Integrated analysis of multimodal single-cell data. Cell. 2021;184:e29.
Zhang L, He A, Yin Z, Yu Z, Luo X, Liu W, et al. Regeneration of human-ear-shaped cartilage by co-culturing human microtia chondrocytes with BMSCs. Biomaterials. 2014;35:4878–87.
Article CAS PubMed Google Scholar
He A, Xia H, Xiao K, Wang T, Liu Y, Xue J, et al. Cell yield, chondrogenic potential, and regenerated cartilage type of chondrocytes derived from ear, nasoseptal, and costal cartilage. J Tissue Eng Regen Med. 2018;12:1123–32.
Article CAS PubMed Google Scholar
Lin W, Wang M, Xu L, Tortorella M, Li G. Cartilage organoids for cartilage development and cartilage-associated disease modeling. Front Cell Dev Biol. 2023;11:1125405.
Article PubMed PubMed Central Google Scholar
Ma J, Zhang Y, Yan Z, Wu P, Li C, Yang R, et al. Single-cell transcriptomics reveals pathogenic dysregulation of previously unrecognised chondral stem/progenitor cells in children with microtia. Clin Transl Med. 2022;12:e702.
Article PubMed PubMed Central Google Scholar
Otto IA, Levato R, Webb WR, Khan IM, Breugem CC, Malda J. Progenitor cells in auricular cartilage demonstrate cartilage-forming capacity in 3D hydrogel culture. Eur Cell Mater. 2018;35:132–50.
Article CAS PubMed Google Scholar
Otto IA, Bernal PN, Rikkers M, Van Rijen MHP, Mensinga A, Kon M, et al. Human adult, pediatric and microtia auricular cartilage harbor fibronectin-adhering progenitor cells with regenerative ear reconstruction potential. Iscience. 2022;25:104979.
Comments (0)